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ABSTRACT 

The study aims to present a supplementary approach to the IBNR estimation within the 

Gaussian Fuzzy Numbers (GFN) framework in alignment with the chain-ladder method. 

Accordingly, the paper not only introduces concepts and establishes additional perspectives 

that allow the utilization of this type of fuzzy number in the claim estimation context but also 

in distinct areas of knowledge. This proposal corroborates the expansion of the fuzzy logic 

operation in a general sense. The results indicate that the application of the present method 

offers extensive benefits when compared to the traditional approach and to different types 

of fuzzy numbers discussed in previous works. 

Keywords: claims reserve; fuzzy logic; fuzzy numbers; IBNR; estimating. 

 

RESUMO 

O estudo teve como objetivo apresentar uma nova abordagem para a estimação da provisão 

IBNR, usando, para isso, o conceito de Números Fuzzy Gaussianos em consonância com 

o método chain-ladder. Para tanto, o texto introduz conceitos e estabelece novas 

perspectivas que possibilitam não apenas a utilização desse tipo de número fuzzy no 

contexto de provisões técnicas, como também em outras áreas do conhecimento, 

corroborando assim para a ampliação da adoção da lógica fuzzy de forma geral. Os 

resultados indicam que a adoção do método proposto oferece grandes benefícios quando 

comparado à abordagem tradicional e a trabalhos anteriores que exploraram outros tipos 

de números fuzzy.  

Palavras-chave: provisões técnicas; lógica fuzzy; números fuzzy; IBNR; estimação. 

 

RESUMEN 

El estudio tuvo como objetivo proponer un nuevo enfoque para la estimación de IBNR 

mediante el uso de números Fuzzy Gaussianos en consonancia con el método chain-ladder. 

Por lo tanto, el texto introduce conceptos y establece nuevas perspectivas que permiten no 

solo el uso de este tipo de números fuzzy en el contexto de las provisiones técnicas, sino 

también en otras áreas del conocimiento, contribuyendo así a la expansión de la adopción 

de la lógica fuzzy en general. Los resultados indican que la adopción del método propuesto 

ofrece grandes beneficios en comparación con el enfoque tradicional y trabajos previos que 

exploran otros tipos de números fuzzy. 

Palabras clave: provisiones técnicas; lógica fuzzy; números fuzzy; IBNR; estimación. 

 

 

 

 

 

 

 

 

 

 

 

 
 
How to cite this article: 

Bastos, I., Vana, L., & Novo, C. (2023). Estimating INBR claims reserve using Gaussian 

Fuzzy Numbers. Contextus – Contemporary Journal of Economics and Management, 

21(esp.1), e83343. https://doi.org/10.19094/contextus.2023.83343  

Article Information     
Uploaded on 25/01/2023 
Final version on 03/04/2023 
Accepted on 11/04/2023 
Published online on 17/10/2023 
 
Interinstitutional Scientific Committee 
Editor-in-chief: Diego de Queiroz Machado 
Assistant Editor: Alane Siqueira Rocha 
Evaluation by the double blind review system 
(SEER / OJS - version 3)  

  
 

http://www.periodicos.ufc.br/contextus
https://doi.org/10.19094/contextus.2023.83343
https://orcid.org/0000-0003-4648-6045
mailto:ismael@dme.ufrj.br
https://orcid.org/0000-0002-1234-0120
mailto:lbvana@id.uff.br
https://orcid.org/0000-0002-3186-275X
mailto:carolinanovo@id.uff.br
https://doi.org/10.19094/contextus.2023.83343


Bastos, Vana & Novo – Estimating IBNR claims reserve using Gaussian Fuzzy Numbers 

Contextus – Contemporary Journal of Economics and Management (2023), 21(esp.1), e83343 | 2 

1 INTRODUCTION 

 

The insurance policy is a contract involving two parts; 

the policyholder who guarantees the payment of a monetary 

value referred to as premium, and the insurance company, 

which ensures a value that will be paid to the policyholder in 

case of a claim. In order to manage these future payments, 

a fraction of the premium is required to be directed to 

compose the claims reserve. According to Mano and 

Ferreira (2009), claims reserve are values established by 

companies that assume risk as a product.  

It is important to notice that by determining a date t, 

the claims reserve can be separated into two main parts, 

Incurred But Not Reported (IBNR) and Reported But Not 

Settled (RBNS) as presented in Figure 1. The key difference 

is the fact that IBNR is related to the claims which have not 

been reported to the insurance company yet, whereas the 

RBNS refers to the claims previously informed, however, 

unsettled.  

 

 
Figure 1. Claims reserve timeline. 

Source: Developed by the authors. 

 

Figure 1 demonstrates that in IBNR, the time interval 

between the occurrence and the registry of the claim is 

exclusively considered. Therefore, it is not possible to 

directly access or determine the values of the reserve 

without the necessity to establish methods for the 

estimation.  

Furthermore, it is important to observe the application 

of the word 'registry' instead of 'communication' in the 

occurrence of the claim in Figure 1. This application was 

intentional, considering the date the claim is registered on 

the insurance company system. A discussion regarding this 

issue can be found in Mano and Ferreira (2009).  

Straub and Grubbs (1998) illustrated the idea of IBNR 

in a case involving a damaged ship in the harbor stating that 

the damage only became evident when the ship was dry-

docked afterwards. In this case, it is possible to notice that 

a delay may occasionally transpire during the report of the 

accident and its communication to the insurer. Wüthrich and 

Merz (2008) cited that when bodily injury and liability occur, 

it is noticeably common to have an extended length of time 

before the totality of the circumstances of the claim are 

clarified and understood.  

Carvalho B. and Carvalho J. (2019) highlighted the 

fact that the constitution of the claim reserves is a major 

component in the liabilities of a company which assumes 

operations related to risk. Thus, its correct estimation is a 

major goal and, in this regard, Mano and Ferreira (2009) 

emphasized the estimation process relevance of technical 

provisions. On the one hand, an underestimation could lead 

the company to civil insolvency, but on the other hand, an 

overestimation could be problematic to the company due to 

the fact that the allocation of financial resources in distinct 

assets instead of technical provisions ought to be avoided. 

Furthermore, according to the Statistical System of the 

Superintendence of Private Insurance (SUSEP), at the end 

of 2022, the IBNR constituted approximately 23% of the total 

technical provision established in all regional reinsurance 

companies which highlights the importance of a correct 

IBNR estimation.  

Chukhrova and Johannssen (2017) stated that it is 

not possible to observe the present value of the 

accumulated claims on account of the probability that the 

claims were not correctly reported. Some examples are the 

cases in which the claim was not partially reported or 

belated. In this scenario, it is evident the impossibility to 

determine a real punctual value for the accumulated 

payments without causing information loss. 

Since Fuzzy Numbers are mathematical tools 

introduced in the context of fuzzy logic to codify vague data 

as defined in Maturo and Fortuna (2016), the Fuzzy Set 

Theory utilization allows the actuary not to merely use a 

single real number but a Fuzzy Number instead, inserting 

vagueness into the observed value. In accordance with de 

Andrés-Sánchez (2016), the Fuzzy Set Theory application 

has the following advantages: 

• The estimates are not random variables, 

consequently, resulting in a difficulty to manipulate 

arithmetical operations. Contrarily, Fuzzy Numbers 

are effortless. 

• The observations are a consequence of the 

interaction between the beliefs of the economic 

agent and the expectations which are exceptionally 

subjective and vague whether the investigated 

phenomena is economic or social. The Fuzzy Set 

Theory is a positive method of managing this 

information. 

• Observations are often not well-defined quantities 

or confidence intervals which are difficult to handle 

using non-fuzzy models culminating in information 

loss. 

 In the context of Fuzzy Numbers application in the 

Actuarial Science field, de Andrés-Sánchez and Terceño 

Gómez (2003), Heberle and Thomas (2014), de Andrés-

Sánchez (2016) and, Heberle and Thomas (2016) employed 

the Triangular Fuzzy Numbers (TFNs) supporting the 

preference based on the fact that it is simple to work with 

this type of Fuzzy Number. In contrast, the present work 

uses the Gaussian Fuzzy Numbers (GFNs) in order to 

demonstrate that it is not more complicated than the TFNs. 

Diversely, the current study demonstrates that the 

use of GFNs does not infer great difficulty in dealing with this 

type of FN, in addition, provides tools to work not only in the 

specific context of claims reserving estimation but also in 

different areas where data presents vagueness. 

This article aims to introduce a new approach to the 
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IBNR estimation applying the Gaussian Fuzzy Numbers 

(GFNs) concept in consonance with the Chain-Ladder 

Method (CLM). 

 

2 THEORETICAL FRAMEWORK 

 

As it can be observed in Wüthrich and Merz (2008) 

research, the CLM was used as a purely computational 

method for an extended period of time. The work of Mack 

(1993) established a stochastic foundation in a distribution-

free model that serves as basis for the method.   

Regarding the fuzzy logic field, it is notable the 

increase of papers related to insurance since the proposition 

of the Fuzzy Sets in 1965 by Lofti A. Zadeh. The first 

publication approaching the use of fuzzy concepts in 

insurance was performed by de Wit (1982) who developed 

a study about the employment of Fuzzy Set Theory in 

underwriting. Subsequently, a number of other insurance 

themes were studied under the fuzzy logic perspective, 

namely: insurance pricing, asset allocation funds, and 

claims reserving estimation. A complete research on the 

applications of fuzzy logic in the insurance framework can 

be observed in Derrig and Ostaszewski (1999) and Shapiro 

(2004). 

It is possible to cite as a groundbreaking work, 

specifically in the claims reserve field, the proposal 

established by de Andrés-Sánchez and Terceño Gómez 

(2003) which focused on the application of the fuzzy 

regression method applying the Triangular Fuzzy Numbers 

(TFN) to solve actuarial problems including claims reserving 

estimation. In a similar fashion, de Andrés-Sánchez (2006) 

and de Andrés-Sánchez (2012) approached the use of fuzzy 

regression in the estimation. 

Apart from the scope of fuzzy regression, it is notable 

the work developed by Heberle and Thomas (2014) 

proposing a new method to estimate claims reserve 

combining CLM with TFN. The paper described the 

complete methodology and its underlying concepts of the 

arithmetic operation between triangular fuzzy numbers and 

the application in the claims reserving estimation process. 

The main innovation brought by this article is the proposal 

of a new method that relies on a truly diffused and vastly 

used method aiming to present a procedure to transfer from 

the real numbers field to the triangular fuzzy numbers and 

vice versa. 

More recently and similarly, Heberle and Thomas 

(2016) proposed a new approach to the TFN application by 

Bornhuetter–Ferguson, however, differently from their 

previous paper, this one aims to present a procedure to use 

exogenous information still relying on the Bornhuetter-

Fergusson method proposed in their work in 1972. 

Since the publication of Antonio and Plat (2013), it is 

possible to notice a rise in methods to estimate the claims 

reserve based on individual instead of aggregated data. The 

main difference is the fact that in individual data every claim 

is individually considered, nevertheless, the methods that 

use aggregated data connect individual data at a specific 

level.  

The prime reason for the interest in the utilization of 

individual data is explained in England and Verrall (2002) 

which according to the authors, the techniques employing 

aggregated data were developed before the emergence of 

desktop computers when these methods were evaluated 

with pen and paper. However, they raised the question 

concerning the relation between the constant increase of the 

computational power and the process of examining the 

individual instead of aggregated data. 

More recently, Delong et al. (2021) examined the use 

of neural network applied to individual claim data, compared 

the results with the ones obtained using the chain-ladder 

method achieving almost equal resulting reserves in both 

approaches. This information leads to the fact that 

aggregated models do not imply in the necessity to be 

simply abandoned and forgotten. As stated by Wüthrich 

(2018), the CLM is probably the most popular method used 

as reference for the estimation of the claims reserve due to 

its simplicity and capacity to generate precise results. 

In contrast, machine learning models tend to be more 

complex and more difficult to implement in practice. In 

alignment with the model, Carvalho B. and Carvalho J. 

(2019) highlighted a research carried out in 2016 by the 

International Actuarial Association (IAA). The study included 

the participation of 535 members from 42 countries who 

were inquired in respect of the main methodologies applied 

for claims reserving estimation. According to the research, 

the CLM had a widespread performance among the 

deterministic methods being adopted by 95% of the 

participants. Specifically in Brazil, the research 

demonstrated that 97% of the 34 Brazilian insurance 

companies adopt the CLM as the main or alternative 

method. 

In this article, the proposed method is an extension of 

the CLM specifically working with GFNs instead of real 

numbers. This fact will not exceedingly increase the 

complexity of the method, however, simply changes the 

procedure that the actuary has to deal with each part of the 

CLM considering the fuzzy values. 

 

2.1 Chain-ladder method 

This section aims to present the CLM with the 

addition of the concepts presented in Mack (1993). It is 

important to notice that this article does not make a 

distinction between the classical chain-ladder method and 

the chain-ladder model applying CLM in both approaches. 

The main goal is to resume the data in a structure named 

run-off triangle where the triangle can be seen as a matrix 

with each element referring to the number of transpired 

claims, the total amount of paid claims, or variations in the 

acquired claims which occurred in the moment and 

consequently registered with delay following the structure 

presented in Figure 2. 
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Figure 2. Development triangle. 

Source: Developed by the authors. 

 

In Figure 2, considering the main objective of the 

claims reserving estimation to determine these values, it is 

relevant to distinguish the elements which are known in one 

side and the elements which are not previously recognized 

on the other. Another important issue to notice is the fact 

that it can assume different periods of time.  

For example, the measurements could last for 

months and weeks. Similarly, but not mandatory, this article, 

in order to simplify, only considers the case where the CLM 

relies in the cumulative triangle sharing the same structure 

as it can be observed in Figure 3 rather than relying on the 

incremental triangle; the only difference is that each element 

is obtained by:  

𝐶𝑖,𝑗 = ∑ 𝑋𝑖,𝑘
𝑗
𝑘=1 , 𝑖 + 𝑗 ≤ 𝐼 + 1. (1) 

 
Figure 3. Cumulative development triangle. 

Source: Developed by the authors. 

 
According to Wüthrich and Merz (2008), the CLM 

assumes that the cumulative claims of different occurrence 

periods are independent and also assumes that exist 

development factors such as  𝑓1, … , 𝑓𝐽−1  > 0 such as for all 

1 ≤ 𝑖 ≤ 𝐼 and all 1 ≤ 𝑗 ≤ 𝐽 we have: 

 

𝐸[𝐶𝑖,𝑗|𝐶𝑖,1, … , 𝐶𝑖,𝑗−1] = 𝐸[𝐶𝑖,𝑗|𝐶𝑖,𝑗−1]

=  𝐶𝑖,𝑗−1𝑓𝑗−1 
(2) 

 
The main idea of the chain-ladder method is to infer 

𝐶𝑖,𝑗 ,   𝑖 + 𝑗 > 𝐼 + 1 using 𝐶𝑖,𝑗 ,   𝑖 + 𝑗 ≤ 𝐼 + 1, and using the 

idea that the claims evolve along the development period 

according to a factor 𝑓 called development factor, being 

defined as follows: 

 

𝑓𝑗 =
∑ 𝐶𝑖,𝑗+1

𝐼−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝐼−𝑗
𝑖=1

  𝑖𝑓  1 ≤ 𝑗 ≤ 𝐽 − 1. (3) 

As it can be observed, Equation 3 presents an 

estimator proposed in Mack (1993). It is important to 

mention that, according to Kubrusly et al. (2008), there is a 

possibility to use other estimators such as the sample mean, 

the greater factor, the lower factor, the median, or any other 

statistics. However, this study used the definition proposed 

in Mack (1993) to simplify the comprehension 

Thus, the values 𝐶𝑖,𝑗 ,   𝑖 + 𝑗 > 𝐼 + 1 can be estimated 

in the following manner: 

�̂�𝑖,𝑗 = 𝐶𝑖,𝐽−𝑖+1 ∏ 𝑓𝑘

𝑗−1

𝑘=𝐽−𝑖+1

. (4) 

 

As stated in Mack (1993), the two objectives of chain-

ladder method are to estimate: 

• The ultimate claim amount (𝐶𝑖,𝐽) 

• The outstanding claim reserve (𝑅𝑖) 

 

Where 𝑅𝑖 is defined by the following equation: 

 

𝑅𝑖 = 𝐶𝑖,𝐽 − 𝐶𝑖,𝐽+1−𝑖 . (5) 

 

The chain-ladder method considers that 𝐶𝑖,𝐽 is not 

known, for 𝐽 > 1. For this reason, it is necessary to estimate 

𝑅𝑖: 

�̂�𝑖 = �̂�𝑖,𝐽 − 𝑌𝑖,𝐽+1−𝑖 , 𝑖 > 1. (6) 

 

Where 𝐶𝑖,𝐽 can be simply estimated by applying 

Equation 4 with 𝑗 = 𝐽. 

 

2.2 Fuzzy sets 

A fuzzy set Ã is a collection of pairs (𝑥, 𝐹Ã(𝑥)), where 

𝑥 is an element of the universe of discourse (𝑈) and 𝐹Ã 

denotes the membership grade of 𝑥 to 𝑈, i.e.: 

 

�̃� =  {(𝑥, 𝐹Ã(𝑥))|𝑥 ∈𝑈 𝑎𝑛𝑑 𝐹Ã(𝑥) ∈ [0,1] }, (7) 

where 𝐹Ã: 𝑈 → [0,1]  is called the membership 

function. 

As explained by Zadeh (1965), the concept of the 

membership function is the point that separates classical 

from fuzzy logic. Whereas in classical logic if there is a set 

𝐴 and an element 𝑥, only two options stand,  𝑥 ∈  𝐴 or 𝑥 ∉

 𝐴; in fuzzy logic, from a given set Ã and element 𝑥, it is 

possible to say that 𝑥 belongs to Ã with membership grade 

𝐹Ã(𝑥), where 𝐹Ã(𝑥) can be any value on the interval [0,1].  

An example described in de Wit (1982) which 

occurred in the life insurance field concerning people who 

drink "a lot" or "a little" alcohol a day. The notion of drinking 

"a lot" is vague and probably distinct when asking a 

physician of a life insurance company and a pub owner. In 

this case, if the set drinking "a lot" was a fuzzy set with a 

well-defined membership function, this dubiousness would 

not occur. 
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According to Bojadziev G. and Bojadziev M. (1995), 

a fuzzy set is completely defined by its membership 

function. This definition is moderately useful with great 

impact considering that if it is given, it is not necessary to 

describe the whole elements. In this sense, this paper 

exclusively used the membership function to represent a 

fuzzy set. 

 

2.3 Fuzzy numbers 

As stated in Lee (2004), a fuzzy set is a fuzzy number 

if it meets the requirements of the following properties: 

1. It is defined on 𝑅; 

2. It is a normalized set; 

3. It is a convex set; 

4. There is continuous membership function; 

5. There is compact support. 

As reported by Maturo and Fortuna (2016), it is 

necessary to add a new property to the list specially dealing 

with a bell-shaped fuzzy number such as the GFN.  

The first property just states that 𝑈 = 𝑅. Related to 

property 2, a fuzzy set is called normalized if, and only if 

exists an element in this set with a membership grade equal 

to 1, i.e.: 

 

∃(𝑥, 𝐹Ã(𝑥)) ∈  �̃� | 𝐹Ã(𝑥) = 1 . (8) 

 
In reference to property 3, a fuzzy set is convex if: 

 

𝛼′ ≥ 𝛼 → 𝐴𝛼′ ⊆ 𝐴𝛼  . (9) 

 

Considering property 5, a support of a fuzzy set is 

represented by the following notation: 

 

𝑠𝑢𝑝𝑝(�̃�) = {𝑥 ∈  𝑈 |𝐹Ã(𝑥) ≠ 0}. (10) 

 
In this sense, when the fuzzy set is referred as 

containing a compact support, it implies that  𝑠𝑢𝑝𝑝(Â) is 

bounded. 

Lee (2004) exposes different types of fuzzy numbers 

each one with unique characteristics. Figure 4 shows the 

main fuzzy numbers found in literature where (a) represents 

a Gaussian Fuzzy Number, (b) represents a Triangular 

Fuzzy Number and (c) a Trapezoidal Fuzzy Number. 

 

 
Figure 4. Examples of Fuzzy Numbers 
Source: Developed by the authors. 
 

2.4 𝛼–cut sets 

An 𝛼-cut of a fuzzy set Ã is composed of the elements 

that belong to 𝑈 that 𝐹Ã(𝑥) ≥  𝛼, i.e.: 

 

𝐴𝛼   = {𝑥 ∈ 𝑈|𝐹Ã(𝑥) ≥ 𝛼}, 𝑤ℎ𝑒𝑟𝑒𝛼 ∈

[0,1]. 
(11) 

The idea is to merely select a group of elements 

containing a membership grade greater than or equal to the 

selected 𝛼. 

The graphical representation of an 𝛼-cut is illustrated 

in Figure 5. Notably, an 𝛼–cut is just a cut held in the fuzzy 

set, where just elements with membership grade greater or 

equal to  𝛼 are extracted. 

 

 
Figure 5. 𝛼–cut set for different type of fuzzy numbers. 

Source: Developed by the authors. 
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2.5 Arithmetic operations between fuzzy numbers 

It is possible to notice a number of approaches in 

arithmetic operations between fuzzy numbers. The present 

work applied the definition formulated in Hanss (2005). The 

reason for this approach presents benefits when dealing 

with symmetric fuzzy numbers, in addition, it simplifies the 

operations.  

Let �̃� and �̃� be two symmetric GFNs, the arithmetic 

operations between them can be defined as follows: 

 

2.5.1 Addition 

�̃�  +  �̃� = 𝐺𝐹𝑁(𝜇�̃� + 𝜇�̃�,  𝜎�̃� + 𝜎�̃�). (12) 

2.5.2 Multiplication 

�̃�  ⋅  �̃�  ≈ 𝐺𝐹𝑁(𝜇�̃� + 𝜇�̃�, 𝜇�̃�𝜎�̃� + 𝜇�̃�𝜎�̃�). (13) 

It is important to mention that Equation 13 uses the 

tangent approximation as defined in Hanss (2005). Bearing 

this in mind, when this type of operation is performed, 

the symbol = is used instead of ≈. 

 

2.6 Gaussian Fuzzy Numbers 

The membership function of a GFN arises from the 

definition of the Gaussian distribution. According to Heberle 

and Thomas (2014), from a statistical point of view in this 

case, the membership function performs a similar role as the 

probability density function of a random variable.  

The probability density function of a Gaussian 

distribution is defined as follows: 
 

𝐺(𝑥) =
1

𝜎 √2𝜋
𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2 )  − ∞ < 𝑥 < ∞ (14) 

In that way, Dutta and Limboo (2017) define the 

membership function of a GFN as: 
 

𝐹Ã(𝑥) =  𝑒𝑥𝑝 (−
(𝑥 − 𝜇)2

2𝜎2 )    − ∞ < 𝑥 < ∞ (15) 

 

When following Equation 15 it is possible to admit that 

a GFN is completely defined by the parameters 𝜇 and 𝜎, 

using for this the notation 𝐺𝐹𝑁(𝜇, 𝜎), where 𝜇 represents the 

central value, in other words, the value that has membership 

degree equals to 1, and 𝜎 represents the dispersion of the 

values concerning 𝜇. 

The membership function presented in Equation 15 

meet the requirements of the first four properties defined at 

the start of this section, nevertheless, it fails in the last one. 

It occurs because 𝐹Â(𝑥) ≠ 0   ∀ 𝑥 ∈  (−∞, ∞).  For this 

reason, is it not correct to affirm that the GFN presented is 

a fuzzy number. In order to solve this question, it is 

necessary to adopt the concept of  𝛼-cuts, as defined in 

Maturo and Fortuna (2016).  

An  𝛼-cut set of a GFN can be described as: 

 

exp (−
(𝑥 − 𝜇)2

2𝜎2 )  ≥ 𝛼 

⟹  −
(𝑥 − 𝜇)2

2𝜎2
≥𝑙𝑛 (𝛼) 

 ⟹ |𝑥 − 𝜇| ≤  𝜎√−2 𝑙𝑛 (𝛼), 

(16) 

 

Thus: 

 

𝐴𝛼 =  [𝜇 − 𝜎 √−2𝑙𝑛(𝛼), 𝜇 + 𝜎√−2𝑙𝑛(𝛼)], 

𝛼 ∈  (0,1). 
(17) 

 

2.6.1 The uncertainty of a GFN 

As illustrated in Gonzalez et al. (1999), the 

imprecision of a fuzzy number matches with the area below 

the curve of its membership function. In this respect, it is 

important to mention the approach performed in Heberle 

and Thomas (2014) with TFNs where the area of the triangle 

multiplied by a constant was performed as an uncertainty 

measure. However, a problem emerges with this definition. 

The upper limit for the value is boundless culminating in 

exceptionally great levels of interpretative conditions for the 

uncertainty. To overcome this scenario, Maturo and Fortuna 

(2016) proposed, as measurement of the uncertainty, the 

ratio between the area under the curve of the membership 

function and its range which culminates in a value contained 

in [0,1]. 

Indicating the area under the membership function 

curve as 𝑆, the area under the curve of a GFN can be 

defined as: 

 

𝑆 = ∫ 𝐹Ã(𝑥)
𝜇+𝜎√−2 ln(𝛼)

𝜇−𝜎 √−2𝛼) 

 𝑑𝑥 

=  𝜎√2𝜋[𝜙(√−2𝑙𝑛 (𝛼)) − 𝜙(−√−2𝑙𝑛 (𝛼))] . 

(18) 

Representing 𝐷 the difference between the upper and 

lower limit of the interval defined in Equation 17 and 𝑈𝐴 the 

uncertainty related to the fuzzy set �̃� is possible to 

demonstrate that: 

 

𝑈Ã =
𝑆

𝐷

=
√2𝜋 [𝜙(√−2𝑙𝑛 (𝛼)) − 𝜙(−√−2𝑙𝑛 (𝛼))] 

2√−2𝑙𝑛 (𝛼)
. 

(19) 

 

Alternatively: 

 

𝑈Ã =  
√2𝜋[𝜙(√−2𝑙𝑛 (𝛼)) − 0.5]

√−2𝑙𝑛 (𝛼)
 . (20) 
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2.6.2 The expected value of a GFN 

While Mano and Ferreira (2009) mentioned the 

possibility to estimate claims reserve using numeric 

intervals, de Andrés-Sánchez (2006) states that it is 

common in practice circumstances the quantification of this 

interval as a real number. In this sense, it is possible to 

employ a process named defuzzification. This procedure is 

frequently adopted to transform a fuzzy number into a real 

number. As observed in Chakraverty et al (2019), it is 

possible to note distinct approaches to defuzzification. For 

example, the Max-Membership Method in which the value 

with maximum membership grade is exclusively considered. 

Generally, as stated by the authors, there is a number of 

defuzzification methods differing by the selected function to 

translate fuzzy set into a real number. This paper adopts the 

process defined by de Andrés-Sánchez (2006) and Heberle 

and Thomas (2014) applying the notion of the expected 

value of a fuzzy number. Both studies mentioned a previous 

main focus on TFN and the use of the risk aversion 

parameter. 

In that sense, 𝛽 = 1  means that the decision maker 

is uncommonly conservative, consequently, indicating the 

preference to require strong confidence in respect of the 

estimate being sufficient to ensure future payments even if 

the company may eventually overestimate it. In counterpart, 

𝛽 = 0 indicates that the individual is less cautious, 

assuming that the lowerst possible value is sufficient to 

guarantee the solvency of the company.  it is worth noting 

that  𝛽 = 0.5 leads to a neutral position about the risk. 

From this perspective, this work aimed to extend to 

the GFNs the definition elaborated in de Andrés-Sánchez 

(2006) and in Heberle and Thomas (2014). The definition of 

the GFN Expected Value is stated as:  

𝐸𝛽[𝐺𝐹𝑁(𝜇, 𝜎)] = 𝜇 − (1 − 𝛽) ∫ 𝑒𝑥𝑝 (
−(𝑥 − 𝜇)2

2𝜎2 )
𝜇

𝜇−𝜎√−2𝑙𝑛(𝛼)

 𝑑𝑥 + 

⠀⠀ + 𝛽 ∫ 𝑒𝑥𝑝 (
−(𝑥 − 𝜇)2

2𝜎2 )
𝜇+𝜎√−2𝑙𝑛(𝛼)

𝜇

 𝑑𝑥.   

(21) 

Alternatively, when applying the cumulative 

distribution of the standard normal distribution, is possible to 

rewrite Equation 21 in the following manner: 

𝐸𝛽[𝐺𝐹𝑁(𝜇, 𝜎)] = 𝜇 + 𝜎√2𝜋(𝜙(√−2𝑙𝑛(𝛼)) −

0,5)(2𝛽 − 1). 
(22) 

 

3 METHODOLOGY 

 

In reference to the use of fuzzy numbers in claims 

reserving estimation, it is possible to highlight the research 

performed by Heberle and Thomas (2014) applying TFNs to 

determine the development factors in the chain-ladder 

method. For that matter, it is worth to point out that despite 

the widespread utilization of TFNs, a number of 

disadvantages are presented. According to Maturo and 

Fortuna (2016), an approach that resorts to TFNs can 

occasionally reveal an enforced approximation of the real 

phenomena. Furthermore, it rapidly converges to low values 

of the membership degree due to their smoothness. As 

specified in Lee (2004), this characteristic can be observed 

as a consequence of a TFN membership function being 

modeled by lines. 

Given the above explanation, the utilization of GFNs 

provides a desirable alternative to model a number of real 

world circumstances. Thus, it presents smooth variations of 

the membership values owing to the fact that it is modeled 

as a bell-shaped curve. 

As stated at the beginning of this paper, this study 

aims to create a fuzzy model to claims reserving estimation 

using the chain-ladder method as a base. In order to 

accomplish this goal, it is necessary to adapt the chain-

ladder method equations to deal with fuzzy numbers 

operations. 

Considering and assuming that �̃�𝑖,𝑗 =

 𝐺𝐹𝑁 (𝜇�̃�𝑖,𝑗
;  𝜎𝐶𝑖,𝑗

), where  �̃�𝑖,𝑗 is GFN equivalent of 𝐶𝑖,𝑗 but in 

the context of fuzzy numbers, the definition made in 

Equation 1 is replaced by: 

𝜇�̃�𝑖,𝑗
=  ∑ 𝑋𝑖,𝑘

𝑗

𝑘=1

 ,    𝑖 + 𝑗 ≤ 𝐼 + 1, (23) 

In addition, 

 𝜎�̃�𝑖,𝑗
=  0, 𝑖 + 𝑗 ≤ 𝐼 + 1,    𝑖 + 𝑗 ≤ 𝐼 + 1 . (24) 

In order to estimate the claims reserve, the Equation 

4 is modified as follows: 

 

�̂̃�𝑖,𝐽 = �̃�𝑖,𝐽−𝑖+1 ∏ 𝑓𝑗
𝑗−1
𝑘=𝐽−𝑖+1  , (25) 

where 𝑓𝑗 = 𝐺𝐹𝑁(�̂�
�̂̃�𝑗

;  �̂�
�̂̃�𝑗

) and: 

�̂�
�̂̃�𝑗

=  
∑ 𝐶𝑖,𝑗+1

𝐼−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝐼−𝑗
𝑖=1

; 

�̂�
�̂̃�𝑗

=  
𝜎�̂�

√∑ 𝐶𝑖,𝑗
𝐼−𝑗
𝑖=1

   1 ≤ 𝑗 ≤ 𝐼 − 1, 

(26) 

𝜎�̂� =  
1

√𝐼 − 𝑗 − 1
√∑ 𝐶𝑖,𝑗 (

𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− �̂�

�̂̃�𝑗
)

2𝐼−𝑗

𝑖=1

  ,

𝑖𝑓 1 ≤ 𝑗 ≤ 𝐼 − 2.   

(27) 
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Due to the fact that Equation 27 is undefined for 𝐼 −

1, the definition made in Mack (1993) is used in this specific 

case as stated below: 

�̂�𝐼−1 = √(
�̂�𝐼−2

4

�̂�𝐼−3
2 , (�̂�𝐼−3

2 , �̂�𝐼−2
2 )). (28) 

The estimator �̂�𝑗 defined on section 2.1 s therefore 

represented as a GFN �̂̃�𝑖 = 𝐺𝐹𝑁(�̂��̂̃�𝑖
, �̂��̂̃�𝑖

) where: 

�̂�
�̂̃�𝑖

= �̂�
�̂̃�𝑖,𝐽

− 𝜇�̃�𝑖,𝐽+1−𝑖
; 

�̂��̂̃�𝑖
= �̂��̂̃�𝑖,𝐽

− 𝜎�̃�𝑖,𝐽+1−𝑖
.  

(29) 

 

4 ANALYSIS AND DISCUSSION OF RESULTS 

 

In this section, the results obtained through the 

application of the methodology defined in the above section 

were demonstrated. For this purpose, it was used the data 

from a U.K. Motor Non-Comprehensive account published 

by Christofides (1997) referring to the total claim amount of 

paid claims as presented in Table 1. 

 

Table 1 

Incremental claims payment triangle 
Occurrence Development Period 

 1 2 3 4 5 6 7 

1 3511 3215 2266 1712 1059 587 340 
2 4001 3702 2278 1180 956 629  

3 4355 3932 1946 1522 1238   
4 4295 3455 2023 1320    

5 4150 3747 2320     

6 5102 4548      

7 6283       

Source: Christofides (1997, D5.17). 

Thereby, in order to assemble the chain-ladder 

method is necessary to work with the cumulative triangle as 

presented in Table 2. 

 

Table 2 

Cumulative development triangle 
Occurrence Development Period 

 1 2 3 4 5 6 7 

1 3511 6726 8992 10704 11763 12350 12690 
2 4001 7703 9981 11161 12117 12746  

3 4355 8287 10233 11755 12993   

4 4295 7750 9773 11093    

5 4150 7897 10217     

6 5102 9650      

7 6283       

Source: Christofides (1997, D5.16). 

 
The values presented in Table 2 are utilized for the 

estimation of 𝑓𝑗 as it can be seen in Table 3. For 

simplification, the notation (𝜇�̃�𝑖,𝑗
;  𝜎�̃�𝑖,𝑗

) is utilized instead of 

𝐺𝐹𝑁 (𝜇�̃�𝑖,𝑗
;  𝜎�̃�𝑖,𝑗

). 

 
Table 3 
Development factors. 

𝒌 �̂̃�𝒌(𝝁, 𝝈) 

1 (1.8992;  0.0178 )  
2 (1.2824;  0.0171) 
3 (1.1471;  0.0151) 
4 (1.0967;  0.0058) 
5 (1.0510;  0.0010) 
6 (1.0275;  0) 

Source: Developed by the authors. 
 

According to Equation 25, using the table 3 terms, it 

is possible to determine the unrecognized values of Table 

2. In this respect, Table 4 presents the cumulative 

development triangle.

 
Table 4 
Development factors for each development period. 

Occurrence Development Period 

 2 3 4 5 6 7 

2      (13096,90;  
0,0128) 

3     (13654,62;  
13,04) 

(14030,54;  
13,42) 

4    (12166,34; 
64,70) 

(12785,86; 
80,21) 

(13137,86; 
 82,43) 

5   (11719,97; 
 154,14) 

(12853,97; 
 237,42)   

(13508,51; 
 262,41) 

(13880,40; 
 269,65) 

6  (12374,98; 
 164,64) 

(14195,40 ; 
375,56) 

(15568,92; 
 494,69) 

(16361,71; 
 535,52) 

(16812,15; 
 550,28) 

7 (11870,06; 
 111,69) 

(15221,94; 
 345,74) 

(17461,17; 
 626,25) 

(19150,67; 
 788,70) 

(20125,85;  
848,09) 

(20679,92; 
871,45) 

Source: Developed by the authors. 
 

Observing �̂�𝑖,𝑗𝛼
 the 𝛼-cut of each set presented in 

Table 4 is possible to build the 𝛼-cut of estimated fuzzy 

numbers �̂̃�𝑖,𝐽,    𝑖 + 𝑗 >  𝐼 + 1  as presented in Figure 6.
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Figure 6. Comparison between 𝛼-cuts for the estimated claims reserve. 

Source: Developed by the authors. 

 

As observed in Figure 6, the more 𝛼 increases, the 

lower the range of variation is produced. However, 

according to Table 5, it is possible to note an increase in 

uncertainty related to each 𝛼-cut, evidencing the trade-

off between precision and uncertainty. This situation occurs 

due to the fact that when 𝛼 increases, the elementswhich 

present membership grade lower than 𝛼 are eliminated from 

the set. Consequently, the lower and upper limits will 

decrease. 

 
Table 5 

Uncertainty of �̂�𝑖,𝑗𝛼
with different 𝛼. 

𝜶 𝟎. 𝟎𝟏 𝟎. 𝟏 𝟎. 𝟓 𝟎. 𝟗 

𝑈�̂�𝑖,𝑗
 0.4120 0.5654 0.8100 0.9660 

Source: Developed by the authors. 
 

The values of Table 5 were obtained through the 

application of Equation 20. It is important to realize that 

uncertainty exclusively depends on  𝛼.It is worth mentioning 

that the intervals presented in Figure 6 are absolutely useful 

to comprehend the notion of interval where the true value of 

the claims belong. However, it is occasionally necessary to 

attribute a real value to the IBNR reserve in practice and not 

in numeric interval. In this sense, the definition performed in 

Equation 22 was applied. 

Table 6 shows the expected value of �̂̃�𝑖,𝑗for variations 

of the parameter 𝛽. The parameter 𝛼 was fixed in 0.01 in 

order to simplify. It is possible to notice that the greater the 

risk aversion 𝛽, the greater the expected value. Moreover, 

when specifically observing the column with 𝛽 = 0.5, it is 

clear that the result is identical to the one obtained through 

the classic chain-ladder method which translated into a 

neutral positioning concerning the risk. 

 

Table 6 

Expected value for each  �̂̃�𝑖,𝑗 with different values of 𝛽, 𝛼 =  0.01. 

𝜷 𝟎. 𝟏 𝟎. 𝟑 𝟎. 𝟓 𝟎. 𝟕 𝟎. 𝟗 

𝐸𝛽 [�̂̃�2,7] 13096.89 13096.90 13096.90 13096.91 13096.91 

𝐸𝛽 [�̂̃�3,6] 13642.61 13648.61 13654.62 13660.63 13666.63 

𝐸𝛽 [�̂̃�3,7] 14018.18 14024.36 14030.54 14036.72 14042.89 

𝐸𝛽 [�̂̃�4,5] 12106.75 12136.54 12166.34 12196.13 12225.92 

𝐸𝛽 [�̂̃�4,6] 12711.99 12748.92 12785.86 12822.80 12859.73 

𝐸𝛽 [�̂̃�4,7] 13061.94 13099.90 13137.86 13175.82 13213.78 

𝐸𝛽 [�̂̃�5,4] 11578.01 11648.99 11719.97 11790.95 11861.93 

𝐸𝛽 [�̂̃�5,5] 12635.32 12744.65 12853.97 12963.29 13072.62 

𝐸𝛽 [�̂̃�5,6] 13266.84 13387.68 13508.51 13629.34 13750.18 

𝐸𝛽 [�̂̃�5,7] 13632.07 13756.24 13880.40 14004.57 14128.74 

𝐸𝛽 [�̂̃�6,3] 12223.36 12299.17 12374.98 12450.79 12526.60 

𝐸𝛽 [�̂̃�6,4] 13849.53 14022.47 14195.40 14368.33 14541.27 

𝐸𝛽 [�̂̃�6,5] 15113.33 15341.13 15568.92 15796.71 16024.50 

𝐸𝛽 [�̂̃�6,6] 15868.53 16115.12 16361.71 16608.30 16854.89 

𝐸𝛽 [�̂̃�6,7] 16305.38 16558.76 16812.15 17065.54 17318.92 

𝐸𝛽 [�̂̃�7,2] 11767.20 11818.63 11870.06 11921.49 11972.92 

𝐸𝛽 [�̂̃�7,3] 14903.54 15062.74 15221.94 15381.15 15540.35 

𝐸𝛽 [�̂̃�7,4] 16884.42 17172.79 17461.17 17749.54 18037.91 

𝐸𝛽 [�̂̃�7,5] 18424.33 18787.50 19150.67 19513.84 19877.02 

𝐸𝛽 [�̂̃�7,6] 19344.81 19735.33 20125.85 20516.37 20906.89 

𝐸𝛽 [�̂̃�7,7] 19877.36 20278.64 20679.92 21081.20 21482.48 

Source: Developed by the authors. 

 
Figure 7 presents the expected value of the claims 

throughout the years considering β=0.1 and α=0.01. 
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Figure 7. Expected value of paid claims for each occurrence period with β=0.1 and α=0.01 

Source: Developed by the authors. 

 

It is evident the approximation of the expected values 

and the lower limit of the interval displayed in Figure 7, which 

emphasizes the idea that a lower risk aversion reflects in 

lower values from the expected value of the estimated 

claims reserve. 

Correspondingly, is it notable the opposite situation 

considering a risk aversion equal to 0.9 in Figure 8. The 

expected value is noticeably near the upper limit reinforcing 

the fact that an acute level of risk aversion leads to an acute 

estimate of the IBNR.

 
Figure 8. Expected value of paid claims for each occurrence period with β=0.9 and α=0.01 

Source: Developed by the authors.
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As defined in section 3, it is possible to estimate the 

outstanding claims reserve. In that sense, the values of �̂̃�𝑖 

for each period of occurrence 𝑖 are displayed in Table 7. 

 

Table 7 

Outstanding claims reserve for each year of occurrence 𝑖. 
Year of Occurrence (i) �̂̃�𝒊 

1 0 
2 (350.9; 0.0128) 
3 (1037.537; 13.4184) 
4 (2044.860; 82.4349) 
5 (3663.404; 269.6529) 
6 (7162.151; 550.2762) 
7 (14396.919; 871.4564) 
𝛴 (28655.77; 1787.252) 

Source: Developed by the authors. 
 

Using the values presented in Table 7 in agreement 

with Equation 22, it is possible to determine the expected 

values of the reserves for each year 𝑖 with the 

correspondent risk aversion parameter 𝛽 as presented on 

Table 8. 

 
Table 8 

Expected value of �̂̃�𝑖 for different values of 𝛽 with 𝛼 = 0.01. 
𝜷 𝟎. 𝟏 𝟎. 𝟑 𝟎. 𝟓 𝟎. 𝟕 𝟎. 𝟗 

𝐸𝛽 [�̂̃�2] 350.89 350.90 350.90 350.91 350.91 

𝐸𝛽 [�̂̃�3] 1025.18 1031.36 1037.54 1043.72 1049.89 

𝐸𝛽 [�̂̃�4] 1968.94 2006.90 2044.86 2082.82 2120.78 

𝐸𝛽 [�̂̃�5] 3415.07 3539.24 3663.40 3787.57 3911.74 

𝐸𝛽 [�̂̃�6] 6655.38 6908.76 7162.15 7415.54 7668.92 

𝐸𝛽 [�̂̃�7] 13594.36 13995.64 14396.92 14798.20 15199.48 

𝛴 27009.82 27832.80 28655.77 29478.76 30301.72 

Source: Developed by the authors. 

 

5 EMPIRICAL COMPARISONS WITH SELECTED MODEL 

 

It is clear that the use of the proposed methodology 

allows the generation of different results depending on the 

choice of the parameters. Furthermore, it allows to attain the 

uncertainty related to the obtained interval. However, as 

described in Heberle and Thomas (2014), the generated 

uncertainty cannot be misunderstood as stochastic 

randomness. 

Hence, the present section aims to compare the 

results obtained from the proposed method with the one 

presented in Heberle and Thomas (2014), where 

Triangular Fuzzy Numbers were used. There is a 

necessary remark in relation to the approach made by 

Heberle and Thomas (2014) about the definition of 

uncertainty described in the article. That is not a good 

measure to make comparison because the uncertainty 

measure proposed by the authors can present values 

surpassing the magnitude of 108. Then, the present paper 

extents the definition made on Equation 18 to the TFNs 

instead of using the definition made in Heberle and 

Thomas (2014). 

As a result, the uncertainty of a TFN is constantly 

equal to 0.5 as demonstrated in Equation 30. Thereby, 

being �̃� = TFN (𝑎, 𝑙𝑎 , 𝑟𝑎),  its uncertainty  𝑈𝐴 is equal to 0.5: 

 

𝑈Ã =
𝑆

𝐷
=

1

2
(

𝑟𝑎 − 𝑙𝑎

𝑟𝑎 − 𝑙𝑎
) = 0.5                     (30) 

 

Following the geometric interpretation, S 

characterizes the area of the triangle, and D is the length of 

the base. In this sense, as �̃� is a fuzzy number, by the 

property of normality, the height of the triangle is always 

equal to 1. The reason for the constancy of the uncertainty 

comes from the fact that a TFN has compact support, which 

is seen as a disadvantage by Maturo and Fortuna (2016). 

From this perspective, the authors cite that if the 

notion of 𝛼 −cut sets is applied to TFNs, the reduction in the 

uncertainty is proportional to the cut. As a matter of fact, the 

membership function presents a constant rate of change as 

it can be observed in Figure 4 (b).  

Concisely, the use of Gaussian Fuzzy Numbers 

allows more freedom as a consequence of the presence of 

two adjustable factors (𝛼 and 𝛽) while the Triangular Fuzzy 

Numbers admit only the adjustment of 𝛽. Based on this, 

Figure 9 presents the results obtained when applying the 

methodology proposed in Heberle and Thomas (2014) and 

the results were achieved through the application of the 

methodology proposed in the present text, both based on 

the data presented in Christofides (1997). 
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Figure 9. Comparison between the range of variation for different alpha cuts of GFN and TFN 

Source: Developed by the authors. 

 

 
Figure 10. Comparison between the range of variation for different alpha cuts of GFN and TFN 

Source: Developed by the authors. 

 

Observing Figures 9 and 10, is it notable that the 

result obtained using GFNs presents intervals with lower 

range of variation and lower uncertainty when compared to 

the TFNs as observed in Table 9 which reiterates what 

Maturo and Fortuna (2016) had affirmed. This result 

evidences the fact that TFNs are occasionally forced 

approximations of the phenomena as affirmed by the 

authors. 

Table 9 presents the uncertainty for the 𝛼-cuts 

presented in Figure 7.t is worth mentioning that the 

uncertainty depends only on 𝛼 so it is not necessary to 

calculate the uncertainty for every single number. It is clear 

that the presented 𝛼-cuts led to lower uncertainty compared 

to the method using TFNs. 
 

Table 9 
Comparison of the uncertainty of distinct alpha cuts of the GFN and 
a TFN 

𝑭𝒖𝒛𝒛𝒚 𝑵𝒖𝒎𝒃𝒆𝒓 
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 

𝜶 = 𝟎. 𝟎𝟎𝟏 

𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 

𝜶 = 𝟎. 𝟎𝟏 
𝑻𝒓𝒊𝒂𝒏𝒈𝒖𝒍𝒂𝒓 

𝑈
�̂̃�𝑖,𝑗

 0.3371 0.4120 0.5 

Source: Developed by the authors. 
 

Table 10 displays the overall outstanding claims 

reserve obtained when applying Equation 29 to the values 

of Table 4 and to the results using TFNs presented in 
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Heberle and Thomas (2014). It is possible to observe that 

the use of GFNs generates a lower range of variation as 

evidenced in Figure 8. However, it is noticeable that TFNs 

can occasionally assume values that are not consistent in 

practice, for example 0 and 75474.16. 
 
Table 10 

Outstanding claims reserve (�̂̃�𝑖) for each year of occurrence𝑖 
Year of 

Occurrence (i) 
Gaussian Triangular 

1 0 0 

2 
(350.90; 

0.01) 
(350.90; 350.902; 

350.902) 

3 
(1037.54; 

13,42) 
(1037.54; 1037.54; 

1073.97) 

4 
(2044.86; 

82.43) 
(2044.86; 2044.86; 

2253.40) 

5 
(3663.40; 
269.65) 

(3663.40; 3663.40; 
4466.09) 

6 
(7162.15; 
550.28) 

(7162.15; 7162.15; 
10302.60) 

7 
(14396.92; 

871.46) 
(14396.92; 14396.92; 

28371.42) 

Total 
(28655.77; 
1787.25) 

(28655.77; 28655.77; 
46818.39) 

Source: Developed by the authors. 
 

Figure 11 presents the fuzzy numbers of the total 

outstanding claims reserve using the proposed approach 

(blue line) and the approach (black line) developed by 

Heberle and Thomas (2014). The red line represents the 𝛼 

chosen, just illustrating the value of 𝛼 is 0.01. 

 

 
Figure 11. Comparison of the total estimated reserve using GFNs 

and TFNs. 

Source: Developed by the authors. 

 

6 CONCLUSIONS 

 

The present article aimed to present a new approach 

to the chain-ladder method to estimate the IBNR using 

Gaussian Fuzzy Number. The results proved that the use of 

GFNs does not increase the complexity of the model, it 

simply changes the way that each part is applied. 

The results are generated as numeric intervals in 

which the uncertainty is previously inserted by the definition 

of the parameter, evidencing an advantage when working 

with GFNs in comparison with single real numbers. In this 

context, it is important to evidence that the observed data 

performed in the empirical tests were not fuzzy, 

nevertheless, single real numbers instead. This fact 

demonstrates that the proposed model operates both with 

real data and fuzzy observations. 

A major contribution of the present article is the 

definition of the expected value allowing the actuary to 

transit between fuzzy and real numbers. In addition, the 

definition of uncertainty and the idea of establishing a 

measure which exclusively outputs values in the specific 

range is absolutely useful, offering more interpretability of 

the obtained value. 

Another advantage of the approach is the possibility 

to select the risk aversion level providing flexibility and 

allowing the adjustment according to the situation and risk 

aversion of the insurance company in a specific scenario or 

period. 

It is worth mentioning that the results obtained by the 

proposed approach were consistent presenting identical 

results compared to the classic chain-ladder method when 

a neutral aversion to the risk is considered. 

When compared to the previous work that made use 

of TFNs, it is possible to observe that the approach using 

GFNs presents lower range of variation of the estimated 

intervals, lower uncertainty and the possibility of the 

adjustment of the parameter 𝛼, which is a huge advantage, 

since the uncertainty depends only of  𝛼, while in TFNs this 

adjustment is not possible. 

A gap still maintained is the application of GFNs to 

other claim-reserving methods such as the Bornhueter-

Fergusson which allows questions concerning its 

advantages and disadvantages when compared to the 

approach proposed in the current article. Another point that 

can be explored in a future work is the extension of the 

presented method to individual claims data.   
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