Association between cumulative incidence rates, mortality, and lethality from COVID-19 among the elderly and socioeconomic indicators
DOI:
https://doi.org/10.15253/2175-6783.20242593712Keywords:
COVID-19; Health of the Elderly; Incidence; Mortality; Social Determinants of Health.Abstract
Objective: to analyze the association between the cumulative incidence, mortality, and lethality rates of COVID-19 in the older and socioeconomic indicators. Methods: this is an ecological time-trend study that considered all COVID-19 cases and deaths reported by the elderly people in all municipalities in the state of São Paulo. Results: weak positive correlations were found between the cumulative incidence rate of COVID-19 and factors such as the illiteracy rate in people aged 60 and over and elderly people with an income of up to one minimum wage. In addition, there were weak positive correlations between mortality and lethality rates and the municipal Human Development Index. There was a moderate correlation between the mortality rate and the rate of elderly people with no income. Conclusion: there is an association between income, schooling, and the municipal Human Development Index with the cumulative incidence, mortality, and lethality rates of COVID-19 in older people. Contributions to practice: the need for individualized and integrated approaches in health services is strengthened to minimize the effects of the social determinants of health on elderly people, especially in health emergencies.
References
Beese F, Waldhauer J, Wollgast L, Pförtner TK, Wahrendorf M, Haller S, et al. Temporal dynamics of socioeconomic inequalities in COVID-19 outcomes over the course of the pandemic—a scoping review. Int J Public Health. 2022;67:1605128. doi: https://doi.org/10.3389/ijph.2022.1605128
Santos IDM, Machado CV, Pereira AMM, Andrade CLT. Covid-19 na América Latina: desigualdades e capacidades de resposta dos sistemas de saúde a emergências sanitárias. Rev Panam Salud Publica. 2023;47:e88. doi: https://doi.org/10.26633/RPSP.2023.88
Figueiredo AM, Figueiredo DCMM, Gomes LB, Massuda A, Gil-García E, Vianna RPT, et al. Social determinants of health and COVID-19 infection in Brazil: an analysis of the pandemic. Rev Bras Enferm. 2020;73(Suppl 2):e20200673. doi: https://doi.org/10.1590/0034-7167-2020-0673
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: https://doi.org/10.1016/j.jaut.2020.102433
Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. doi: https://doi.org/10.1016/j.arr.2020.101205
Romero DE, Muzy J, Damacena GN, Souza NA, Almeida WS, Szwarcwald CL, et al. Older adults in the context of the COVID-19 pandemic in Brazil: effects on health, income and work. Cad Saúde Pública. 2021;37(3):e00216620. doi: https://doi.org/10.1590/0102-311X00216620
Santos ILD, Zimmermann IR, Donalísio MR, Santimaria MR, Sanchez MN, Carvalho JLBD, et al. Vulnerabilidade social, sobrevida e letalidade hospitalar pela COVID-19 em pacientes com 50 anos ou mais: coorte retrospectiva de casos no Brasil em 2020 e 2021. Cad Saúde Publica. 2022;38:e00261921. doi: https://doi.org/10.1590/0102-311XPT261921
Barbosa IR, Galvão MHR, Souza TA, Gomes SM, Medeiros AA, Lima KC. Incidence of and mortality from COVID-19 in the older Brazilian population and its relationship with contextual indicators: an ecological study. Rev Bras Geriatr Gerontol. 2020;23(1):e200171. doi: https://doi.org/10.1590/1981-22562020023.200171
Agência de Estatísticas do Estado de São Paulo. Sistema Estadual de Análise de Dados. SEADE repositório [Internet]. 2023 [cited Sep 11, 2024]. Available from: https://repositorio.seade.gov.br/dataset/covid-19
Instituto Brasileiro de Geografia e Estatística. Estatísticas de Gênero [Internet]. 2024 [cited Sep 24, 2024]. Available from: https://www.ibge.gov.br/apps/snig/v1/index.html?loc=0,P35&cat=-1,-2,8,87,88,128&ind=4720
Cameron AC, Trivedi PK. Regression analysis of count data. Cambridge University press. 2014. doi: http://doi.org/10.1017/CBO9781139013567
Assis SJC, Lopes JM, Lima Filho BF, Sanchis GJB, Guedes TSR, Cavalcanti RL, et al. Dissemination of COVID-19 in inland cities of Northeastern Brazil. PLoS One. 2021;16(7):e0253171. doi: https://doi.org/10.1371/journal.pone.0253171
Shahbazi F, Khazaei S. Socio-economic inequality in global incidence and mortality rates from coronavirus disease 2019: an ecological study. New Microbes New Infect. 2020;38:100762. doi: https://doi.org/10.1016/j.nmni.2020.100762
Wang C, Wang Z, Wang G, Lau JY, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther. 2021;6(1):114. doi: https://dx.doi.org/10.1038/s41392-021-00527-1
Alberti A, Silva BB, Jesus JA, Zanoni EM, Grigollo LR. Associação do maior número de mortes por COVID-19 e o Índice de Desenvolvimento Humano (IDH) de Cidades Catarinenses. Rev Mult Psic. 2021;15(54):427-34. doi: https://doi.org/10.14295/idonline.v15i54.2973
Lima DL, Morais TC, Daboin BG, Cavalcanti MPE, Mesaroch A, Silva HMR, et al. Perspectiva epidemiológica da evolução da pandemia da COVID-19 no Estado do Amapá, Norte do Brasil. Rev Bras Crescimento Desenvolv Hum. 2021;31(3):414-24. doi: https://doi.org/10.36311/jhgd.v31.12610
Giovanella L, Martufi V, Mendoza DCR, Mendonça MHM, Bousquat A, Aquino R, et al. A contribuição da Atenção Primária à Saúde na rede SUS de enfrentamento à Covid-19. Saúde Debate. 2020;44(spe4):161-76. doi: https://doi.org/10.1590/0103-11042020E410
Moura EC, Cortez-Escalante J, Cavalcante FV, Barreto ICHC, Sanchez MN, Santos LMP. Covid-19: temporal evolution and immunization in the three epidemiological waves, Brazil, 2020–2022. Rev Saúde Pública. 2022;56:105. doi: https://doi.org/10.11606/s1518-8787.2022056004907
Victora PC, Castro PMC, Gurzenda S, Medeiros AC, França GVA, Barros PAJD. Estimating the early impact of vaccination against COVID-19 on deaths among elderly people in Brazil: analyses of routinely-collected data on vaccine coverage and mortality. EClinicalMedicine. 2021;38:101036. doi: https://doi.org/10.1016/j.eclinm.2021.101036
Kim K, Jeung YD, Choi J, Park SK. Social and Policy Determinants of COVID-19 Infection Across 23 Countries: An Ecological Study. J Prev Med Public Health. 2022;55(2):144-52. doi: https://doi.org/10.3961/jpmph.21.396
Flook M, Jackson C, Vasileiou E, Simpson CR, Muckian MD, Agrawal U, et al. Informing the public health response to COVID-19: a sistematic review of risk factors for disease, severity, and mortality. BMC Infect Dis. 2021;21(1):342. doi: https://doi.org/10.1186/s12879-021-05992-1
Mehaffey JH, Hawkins RB, Charles EJ, Turrentine FE, Hallowell PT, Friel C, et al. Socioeconomic “distressed communities index” improves surgical risk-adjustment. Ann Surg. 2020;271:470-4. doi: https://doi.org/10.1097/SLA.0000000000002997
Cestari VRF, Florêncio RS, Sousa GJB, Garces TS, Maranhão TA, Castro RR, et al. Social vulnerability and COVID-19 incidence in a Brazilian metropolis. Ciênc Saúde Coletiva. 2021;26(3):1023-33. doi: https://dx.doi.org/10.1590/1413-81232021263.42372020
Laajaj R, Webb D, Aristizabal D, Behrentz E, Bernal R, Buitrago G, et al. Understanding how socioeconomic inequalities drive inequalities in COVID-19 infections. Sci Rep. 2022;12(1):8269. doi: https://doi.org/10.1038/s41598-022-11706-7
Rodrigues W, Costa Frizzera H, Trevisan DMDQ, Prata D, Reis GR, Resende RA. Social, economic, and regional determinants of mortality in hospitalized patients with COVID-19 in Brazil. Front. Public Health. 2022;10:856137. doi: https://doi.org/10.3389/fpubh.2022.856137r2d22
Hawkins RB, Charles EJ, Mehaffey JH. Socio-economic status and COVID-19–related cases and fatalities. Public Health. 2020;189:129-34. doi: https://doi.org/10.1016/j.puhe.2020.09.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rev Rene
This work is licensed under a Creative Commons Attribution 4.0 International License.