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Quality of forest plantations using aerial images and computer vision
techniques1

Qualidade de plantios florestais por meio de imagens aéreas e técnicas de visão
computacional
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ABSTRACT - Geotechnology has provided several tools that allow the spatial and temporal variability of soils and plants to
be investigated, leading to the consolidation of Precision Agriculture. The great challenge for studies using sensors mounted
aboard Remotely Piloted Aircraft (RPA) lies in interpreting the high-dimensional data, since most sensors do not measure the
biometric parameters of a plant directly. Therefore, the aim of the present study was to develop a methodology for using digital
images (obtained by means of an airborne RGB sensor mounted aboard an RPA) in the quality control of forest plantations,
specifically Eucalyptus (Eucalyptus ssp.), planted in a commercial area. A Phantom 4 Pro multirotor RPA was used, equipped
with a 20 Megapixel RGB sensor, acquiring images with 80% and 60% longitudinal and lateral overlap, respectively. From
the generated orthomosaic, a Test Area was outlined to be used in developing the processing routine based on computer vision
techniques. In general, the proposed methodology maps the individual location of each plant in the orthomosaic, resulting in a
mesh that allows the automatic generation of report maps of various silvicultural variables, such as plant count, planting failures,
and spacing between rows and plants. In addition to high computer performance, with real-time processing, the methodology
was highly accurate in correctly identifying more than 93% of plants in an area of more than 3,000 plants.
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RESUMO - As geotecnologias trouxeram ferramentas para investigar a variabilidade espacial e temporal do solo e da planta,
consolidando a prática da Agricultura de Precisão. O grande desafio para estudos que utilizam sensores embarcados em Aeronaves
Remotamente Pilotadas (RPA) está na interpretação dos dados de alta dimensionalidade, pois a maioria dos sensores não
mensuram diretamente os parâmetros biométricos da planta. Neste sentido, objetivou-se com o presente trabalho, desenvolver
uma metodologia de utilização de imagens digitais (obtidas por meio de um sensor RGB aerotransportado em RPA) para o
controle de qualidade de plantios florestais, especificamente, Eucalipto (Eucalyptus ssp.), implantada numa área comercial.
Utilizou-se uma RPA, do tipo multirotor, do modelo Phantom 4 Pro, equipada com um sensor RGB de 20 Megapixels,
com aquisição de imagem de 80% e 60%, de sobreposição longitudinal e lateral, respectivamente. Após a geração do
ortomosaico, recortou-se uma Área Teste, a qual foi usada no desenvolvimento da rotina de processamento baseada em
técnicas de visão computacional. De maneira geral, a metodologia desenvolvida faz um mapeamento da localização
individual de cada planta no ortomosaico, resultando em uma malha que automatiza a geração de Mapas-Relatórios de
algumas variáveis silviculturais, como contagem de plantas, falhas de plantio, distribuição de espaçamentos entre linhas e
entre plantas. Além de alto desempenho computacional, com processamento em tempo real, a metodologia mostrou acurácia
elevada, identificando corretamente mais de 93% das plantas de uma área com mais de 3 mil plantas.
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INTRODUCTION

Basic management principles that consider the
variability of soils and plants in space and time can
assist rural managers in decision-making in various
agricultural production systems (ARTUR et al., 2014).
This variability, when ignored, increases the inefficiency
of using different inputs, reduces productivity and, as a
result, raises the cost of production (BERNARDI et al.,
2014).

The digital images used in agriculture can be
obtained from several platforms, specifically, at three levels
of acquisition: (a) orbital (Satellites), (b) aerial [Manned
Aircraft (MA) and Remotely Piloted Aircraft (RPA)], and
(c) terrestrial (portable sensors) (SHIRMASUCHI et al.,
2014). These authors highlight various products derived
from such images: estimating biomass, assessing water
stress, the severity of disease, plant identification and
count, and planting failures, among others.

During collection of the aero-photogrammetric
data, some local variations should be considered, such
as the relief (MANCONI et al., 2019) and lighting (SHI
et al., 2016). It is recommended that the operation be
planned and executed within the flight window (true solar
noon, with an interval of plus or minus two hours), always
taking into account the sensor settings (ISO, exposure
time and aperture), as noted by Wang et al. (2019).

The great challenge for studies using airborne
sensors (in RPA) lies in interpreting the high-dimensional
data, since most sensors do not measure the physical,
morphological or physiological parameters of plants
directly (DUARTE; SILVA; TEODORO, 2018).
There are many areas of research that need to be more
detailed, in particular monitoring the models (until now,
largely manually evaluated) and production forecasting
(BALLESTEROS et al., 2014; BORGOGNO-MONDINO
et al., 2018; KOH et al., 2019; POBLETE-ECHEVERRÍA
et al., 2017).

Ruza et al. (2017), state that, despite the advances
in aero-photogrammetric activities employing RPA in the
forestry sector, the production of applied and automated
technical products has not progressed as quickly and still
requires much further research. Özcan et al. (2017), and
Park et al. (2017), also point out the importance of new
studies that explore and present more feasible methods
using images from RPA.

For Yao, Qin and Chen (2019), with the development
of the RPA, together with the onboard sensors, digital
image processing, at its most simple, which consists of
segmenting and classifying images in two and/or three
dimensions, has also seen great advances, making it
possible to detect and track objects on more precise scales

(temporal and spatial). The above authors reaffirm that
this has only been possible using techniques of computer
vision and machine learning, affording significant gains in
automated data analysis.

As such, the development and validation of
methodologies that make it possible to extract and visualize
the spatial variability of various plant attributes quickly
and accurately (remote and automated) will contribute
to the monitoring and quality control of agricultural and
forest systems (FAN et al., 2018; GUERRA-HERNÁNDE
et al., 2017).

Encouraged by these challenges, the aim of this
study was to develop a methodology (using automated
routines) for using aerial images (obtained by means of
sensors mounted aboard RPA) in the quality control of
forest plantations, specifically Eucalyptus (Eucalyptus
ssp.), using computer vision techniques.

MATERIAL AND METHODS

Study area

A commercial plantation (39.4812 ha) of Eucalyptus
(Eucalyptus urophylla x E. grandis)  was  chosen,  with  a
spacing of 3 m x 3 m, 180 days after planting, located
in the district of Juramento, Minas Gerais. In order to
develop the computer routine, a rectangle (Test Area,
3.2768 ha) was selected, centered on UTM coordinates E
663.461, N 8.131.368 and h = 1210 m (SIRGAS 2000,
23-k) (Figure 1).

Collection of the aero-photogrammetric data

The data were collected on 11/23/2018, by means
of a Phantom 4 Pro multi-rotor RPA equipped with a 20
Megapixel RGB sensor, 13.2 mm x 8.8 mm, and a focal
length of 9.1561 mm. The flight plan was prepared using
the DroneDeploy® software, to construct the orthomosaic
with a longitudinal and lateral overlap of 80% and 60%,
respectively. The altitude was programmed for 250 m,
with a maximum speed of 15 m.s-1 and a Ground Sample
Distance (GSD) of 7.0 cm (8 bits radiometric resolution).
It should be noted that the flight was planned to cover an
area of 396 m x 997 m, and that no control points were
used. Finally, the mission was carried out at 11:00 am
(with the aim of minimizing the effects of shading), and
resulted in the collection of 62 images.

After the flight, the images were imported into the
Agisoft Metashape® software for geoprocessing and to
generate the orthomosaic. Cropping of the Test Area and
photointerpretation were carried out using the QGIS 3.14
software.
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Figure 1 - Location of the study area, Juramento, Minas Gerais

Implementation of the automated routine

The routine was implemented using the Spyder
development environment in the Python programing
language, making use of the OpenCV, Numpy, Pandas,
Math, Matplolib and Scipy libraries. Basically, the structure
of the algorithm was divided into two main phases. The
first phase consisted of opening the image of the Test Area
and segmenting the Soil and Vegetation by means of the
Vegetation Index (VI), as well as identifying the center
of each plant canopy for counting. The second phase
consisted in building a triangular mesh using the vertices
obtained as the center of the canopy of each identified plant
and constructing the corresponding occupation diagram.
From the mesh and diagram, the following Report Maps
(RM) were generated: a) area of influence of each plant;
b) identification of planting failures, rows and the area
between rows; c) boxplot of the spacing between plants
and rows; d) spacing distribution between plants and
between rows. Each RM was accompanied by descriptive
statistics and a Euclidean area (ha) of the selected polygon.
The workflow for implementing the proposed routine for

the quality control of forest plantations is summarized in
Figure 2.

In the first phase of the routine, once the image
was imported (Test Area) and after photointerpretation,
the number of classes, or contrast patterns, was defined
based on variations in the predominant characteristics
of the ground cover. The number of samples (template)
per class was then defined. In this study, tests were
carried out using two classes: 1) plants in soil with
ground cover (SC), predominant in the study area; 2)
plants in exposed soil (SE). Both were combined using
up to three samples. It was sought to diversify the
physical characteristics (color, texture, canopy size and
shading) of each sample, with the aim of representing
the variability.

Six tests were carried out, in the following
combinations: 1) one sample in SC; 2) two samples in
SC; 3) three samples in SC; 4) three samples in SC + one
sample in SE; 5) three samples in SC + two samples in SE;
6) three samples in SC + three samples in SE (Figure 3).
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The capture and automatic display of each template
was made possible through the mouse-event control
function, the user just having to position the mouse cursor
on the desired plant and, with a double-click followed by
enter, it is selected and the template displayed.

The RGB bands, the Test Area and the template(s)
are then split. This procedure is necessary to apply the
Gaussian filter to remove noise from the image and,
consequently, estimate the VI. In order to segment the
regions of soil and plants, a threshold with a value of 0 on
the VI response scale was defined where lower values were
considered as soil and other values as plants (Eucalyptus),
this result was taken as the input for the next step of the
first phase, template matching. It should be noted that the
VI was estimated using the VARIgreen metric, proposed
by Gitelson et al. (2002), which uses only the visible
spectrum (RGB) channels.

Template matching, a crucial technique in this study,
was applied using the OpenCV library. This technique is
widely used in computer vision to locate areas (or regions)
of an image that correspond (are similar) to a model image
(template) (BRADSKI, 2000). A mask (template (T)) runs
over an image (I) comparing each position [x, y] by the
process of convolution. The result of the comparison is
stored in a matrix, R[x, y] (Figure 4).

In this study, (I) and (T) correspond respectively
to the VI from the Test Area and the sample(s). It should

Figure 2 - Diagram showing implementation of the automated
routine for the quality control of forest plantations

Figure 3 - Example of the selected samples (templates) with the variation in soil
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Figure 4 - Object detection - Template Matching

be noted that each of the six samples (templates) was
processed separately during template matching, and then,
when combined, the final value for R was obtained from
the arithmetic mean.

The technique of template matching, implemented
in the OpenCV library, offers several metrics to calculate
the response; in this study, ‘TM-CCOEFF-NORMED’
was adopted as the metric, given by the mathematical
expression in Equation 1.

                                                                                       (1)

In this metric, for an I of size (W×H), x0 = 0 ... w
and y0 = 0 ... (h−1). For each position of T[x, y] on I[x,
y], one result of the metric is stored in the result matrix R
[x, y]. The result of this procedure will be a matrix with
values in [x, y] which range from -1 to +1, i.e. low to high
correlation, respectively. Clusters of pixels that presented
values greater than 0.3 were marked as plant canopies,
where the maximum values were considered as the center
of each canopy. The first phase ended after locating [x,
y] each pixel representing the center of the canopy and
outputting the map identifying the eucalyptus plants.

The second phase started with the coordinates
[x, y] of each pixel from the previous phase, i.e. a set of
vertices with the location of each plant. From this set of
vertices, a triangular mesh and the occupation diagram
were constructed, obtaining, respectively, an edge mesh
of the triangles (which allowed the spacing between
plants and rows to be estimated) and the area of influence
(diagram) of each plant. To identify planting failures, any
edges outside the normal spacing between plants were
identified. Finally, the following RM were obtained: a)

area of influence of each plant; b) identification of planting
failures, rows, and the area between rows; c) Descriptive
Statistics.

For computer-processing time, it is relevant to
note that, using a laptop with the Linux operating system
(Ubuntu 18.04), Intel® Core (TM) i7-4500U CPU (4 core,
1.80GHz, 4096 KB L2 cache), 16 GB RAM, SSD storage,
and GeForce GT 740M GPU, it took 96 seconds and 25%
of the RAM to analyze the specified Test Area (using the
above routine).

Data analysis

The performance of the implemented routine was
evaluated by comparing the number of identified plants and
those counted manually (photointerpretation of the Test Area).
Three performance measurement metrics (Equation 2, 3
and 4) were then applied, as per Fan et al. (2018).

                                                                                                 (2)

                                                                                                 (3)

                                                                                                 (4)

The performance measurements use the following
counts: (TP) true positive, or the number of correctly
identified eucalyptus plants; (TN) true negative, or the
number of correctly identified planting failures; (FP) false
positive, or the number of points incorrectly identified as
eucalyptus, but being weeds and/or shade; and (FN) false
negative, or the number of unidentified eucalyptus plants.

The sensitivity (Sb) reflects the ability of the
algorithm to detect eucalyptus plants, while specificity
(Sp) is a measure of the efficiency of the algorithm in
identifying ‘non-eucalyptus’ plants. Overall accuracy (Ac)
is a global measure of the performance of the proposed
method.

In order to increase the rigor of evaluating the
algorithm, two more evaluation metrics were used in this
study. The first, producer accuracy (Pacc), is recommended
by Lavrač, Flach and Zupan (1999) and Moranduzzo and
Melgani (2013), and represents the percentage of correctly
identified eucalyptus plants, Equation 5.

                                                                                       (5)

In measuring Pacc, N indicates the actual number
of eucalyptus plants in the Test Area. The second
measurement, recommended by Armstrong and Collopy
(1992) and Stine et al. (2004), is the relative error (Er),
by which the performance of the proposed method was
determined. For this measurement, Np = TP + FP is used,
which is the number of eucalyptus plants detected by the
automated routine, Equation 6.
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                                                                                       (6)

RESULT AND DISCUSSION

The study presented a highly relevant
characteristic, applicability, considering that the routine
was developed and tested under practical conditions for
the crop under evaluation (commercial plantation). In
terms of obtaining aero-photogrammetric data, the RGB
orthomosaic, with a GSD of 7 cm, allowed the objects
under analysis, plants and soil, to be discriminated. In
images with high spatial resolution, planting and soil
patterns are detectable, affording great potential for their
discrimination and characterization (DELENNE et al.,
2010).

With the adopted flight characteristics, it was
possible to cover 39.4812 ha in approximately nine
minutes. For the model of RPA used, this represents
a minimum operational efficiency of 80 ha battery -1.
The time taken to collect such information is also of
fundamental relevance to the forest survival inventory,
since, when necessary, replanting is recommended 15
to 30 days after the original planting. As this interval
is extended, the smaller the individual volume of each
tree, and, consequently, the smaller its contribution to the
final total volume of the forest (OLVIEIRA et al., 2014).
For extensive forest plantations, such information is of
great relevance.

For the developed routine, it is important to note
that the user only has one moment of manual interference,
which is the choice of sample(s) (template) that will be
used as input for template matching. In this step, when
necessary, the user should take into account the diversity
of the characteristics (color, texture, shape and size) of the
template, as different templates may contribute to the final
result of matching.

Among the proposed (tested) combinations, there
was, in general, no significant difference in performance
metrics, especially for combinations of two classes. This
confirms that the threshold value of zero, defined to
segment the Plants and Soil using the VI, was efficient
(Figure 5). Calculation of the VI, followed by a process
of noise removal (application of a Gaussian filter), made
it possible to segment the plants and soil, increase gain in
the correlation process of template matching and, as such,
contributed to the identification of greater quantities of
correctly identified eucalyptus plants (TP), and the number
of correctly identified planting failures (TN), as well as
reducing the number of points incorrectly identified as
eucalyptus (FP), and the number of unidentified eucalyptus
plants (FN).

The calculated VI (from the RGB channels) does
not require the use of the infrared channel. In practice,
this represents a saving for the user, as a second
sensor is not needed (modified RGB, multispectral
or even hyperspectral). Although the RGB sensor
does not have the ability to decipher narrow spectral

Figure 5 - Orthomosaic and Vegetation Index - RGB
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characteristics, as it is only three spectral bands in
width, it gives good results in obtaining references
for plant growth parameters (shape, color and canopy
size) and in identifying weeds (BALLESTEROS et al.,
2014; BURKART et al., 2018).

The image (R), resulting from the Test Area
correlation (I), in this case the VI-RGB Map and the
template(s) (T), was submitted to a process to identify
the maximum values in each group of pixels (canopy),
with the highest value (center of the canopy) being taken,
(Figure 6).

Each group (representing the canopy of each plant)
comprises a minimum value for the magnitude of the
correlation, known as the cut-off threshold. Definition
of this threshold represents the minimum acceptable
magnitude, defined by the user, to correlate (I) and (T).
As shown by Koh et al. (2019), low cut-off values can
result in overestimation when identifying and counting
the plants, whereas underestimation may result from high
values.

The process of defining the ideal value for the
cut-off threshold is iterative and often exhaustive. It is
part of the calibration process of the computer routine
to define the value that allows the greatest level of
correspondence with the template to be obtained, i.e.
the greatest overall accuracy of the algorithm. Koh
et al. (2019), used template matching to identify and
count saffron (Carthamus tinctorius) in the early stages

Figure 6 - Image (R) resulting from the Test Area correlation (I)
and template (T)

of development, using images obtained with RPA,
defining 0.5 as the value of the cut-off threshold. In the
present study, a threshold of 0.3 was used.

Once the cut-off threshold was defined, the position
[x, y] of each pixel with the highest value was identified
in each group of pixels with values greater than 0.3. The
map identifying the eucalyptus plants was then generated,
Figure 7.

In terms of overall accuracy in identifying and
counting the plants, the developed routine presented a
mean value of 0.9353, with a Pacc of 0.9489. The relative
error (mean) was 0.11%. Using deep artificial neural
networks to assess performance in detecting tobacco plants
by means of images from RPA and automated routines,
Fan et al. (2018), presented an algorithm with an overall
accuracy of 0.9370 and a relative error of 3.94%.

Figure 7 - Identification Map of the eucalyptus plants

The routine showed a high capacity for detecting
eucalyptus plants, with an Sb (mean) of 0.9856. However,
effectiveness in identifying ‘non-eucalyptus’ plants,
i.e. the (mean) Sp value, was compromised, due to the
amount of FP presented. The high  FP values are due to the
occurrence of weeds or even to shadows of the eucalyptus
plants that showed spectral behavior similar to that of the
above-mentioned crop (Figure 8).

It was seen that when only one sample was used
the total number of plants was underestimated, unlike
in the other combinations, albeit with greater overall
accuracy. Abstracting from the metrics Pacc and Er,
the best estimate for TP was reached using the second
combination (two templates in SC). However, FN values
increased (Table 1). TN estimates remained constant for
all combinations.
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Table 1 - Performance of the proposed routine for quality control in a forest plantation using aerial images obtained with RPA.
Sample combinations (Cb), actual number of eucalyptus plants in the RGB orthomosaic (N), number of plants detected by the
automated routine (Np), true positive (TP), true negative (TN), false positive (FP), false negative (FN). Sensitivity (Sb), specificity
(Sp), overall accuracy (Ac), producer accuracy (Pacc), and relative error (Er)

Cb N Np VP VN FP FN Sb Sp Ac Pacc Er (%)

1 3327 3316 3155 14 161 48 0.9850 0.080 0.9381 0.9483 -0.33

2 3327 3332 3167 14 165 51 0.9842 0.078 0.9364 0.9519 0.15

3 3327 3336 3160 14 176 41 0.9872 0.074 0.9360 0.9498 0.27

4 3327 3337 3155 14 182 41 0.9872 0.071 0.9343 0.9483 0.30

5 3327 3331 3153 14 178 48 0.9850 0.073 0.9334 0.9477 0.12

6 3327 3332 3153 14 179 47 0.9853 0.073 0.9334 0.9477 0.15

Figure 8 - Identification of true positive (TP), true negative (TN), false positive (FP) and false negative (FN)

The second phase of the algorithm consisted
in generating the triangular mesh, which allowed
the spacing between plants and between rows to be
estimated. On the other hand, the occupation diagram
allowed the area of influence of each plant to be identified
and estimated (Figure 9A). Using the first combination
(one sample in SC), with 3316 detected plants (Np), a
(mean) occupied area of 9.46 m2 plant-1 was estimated
with a coefficient of variation of 12.88%, i.e. a mean
occupation 5.11% greater than planned. Although the
planting project was planned at 3 m x 3 m (theoretical
final stand of 3454 plants), the field survey, followed
by the analysis, showed underutilization of the land,
with a mean spacing between plants and between rows
of 2.79 m and 3.6 m, respectively.

The information generated by the automated
routine is useful for monitoring the plantation in a
specific area of interest. The variations that occur in the
spacing between plants (CV of 6.73%), and especially
between rows (CV of 13.73%), can be seen from the
RM. The estimated number of plants for replanting was
23, i.e. a survival rate of 99.31%.

The information contained in the histogram
(Figure 9D) also made it possible to define the intervals
of the respective spacings, as well as the cut-off
threshold (based on the mean and standard deviation) of
the occurrence of planting failures. Once this threshold
was defined, the edges between the rows and even the
failures, were drawn by controlling the angle of each
edge on the triangular mesh. It is important to point
out that the above angle is a function of the planting
arrangement.

Several advances and innovations stand out in
this study: (i) an automated routine was presented,
scientifically validated, which provides various
parameters related to the quality control of forest
plantations; (ii) the routine requires minimal user
intervention, simply selecting the sample(s) from
the area of interest; (iii) the routine was developed
on open-source platforms and in Python (a free
programming language); (iv) the routine shows the
excellent performance of an orthomosaic from RGB
channels, i.e. a low-cost sensor.
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Figure 9 - Report Maps (RM): A) Area of influence of each plant; B) Identification of planting failures, rows and the area between
rows; C) Boxplot of the spacing between plants and rows; D) Spacing distribution between plants and rows

CONCLUSIONS

1. The proposed methodology can be applied to aerial
images (obtained through airborne sensors on the
RPA platform) in the quality control of Eucalyptus
(Eucalyptus ssp) plantations;

2. The routine shows high accuracy (0.9353, with a mean
relative error of 0.11%) in identifying and counting
eucalyptus plants in an orthomosaic from a low-
cost sensor (RGB), in addition to excellent computer
performance.
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