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Scientifi c Article

The use of computer vision to classify Xaraés grass according to nutritional
status in nitrogen1

Uso de visão computacional na classifi cação de capim Xaraés segundo o status nutricional em nitrogênio

Wellington Renato Mancin2, Lilian Elgalise Techio Pereira3, Rachel Santos Bueno Carvalho2, Yeyin Shi4, Wilson
Manuel Castro Silupu5, Adriano Rogério Bruno Tech2*

ABSTRACT - This study is based on the principle that vegetation indexes (VIs), derived from the RGB color model obtained
from digital images, can be used to characterize spectral signatures and classify Brachiaria brizantha cv. Xaraés according to
nitrogen status (N). From colorimetric data obtained from leaf blade images acquired in the fi eld, three artifi cial neural networks were
evaluated according to the performance in the classifi cation of N status: Feedforward Backpropagation (FFBP), Cascade Forward
Backpropagation (CFBP) and Radial Base function (RBFNN). Four N fertilization rates were applied to generate contrasting N contents in the
plants. The youngest completely expanded leaves from 60 tillers were detached at each regrowth cycle of 28 days, thus their images and leaf N
content were obtained. Samples were then classifi ed as defi cient (< 17 g N kg-1 leaf dry matter (DM), moderately defi cient (from 17.1
to 20.0 g N kg-1 DM), and suffi cient (> 20.1 g N kg-1 DM). The VIs were selected by principal component analysis and the performance
of the networks evaluated by the accuracy. The accuracy in classifi cation obtained by the networks were 88%, 86% and 79% for FFBP,
CFBP and RBFNN, respectively, indicating that the spectral signatures can be determined from images acquired in the fi eld. So, the
proposed method could be used to develop a software that aims to monitor the status of N in real time, providing a fast and inexpensive
tool for defi ning the time and the amount of N fertilizer, according to the pasture demand.
Key word s: Image processing. Remote sensing. HSB. Spectral signature.

RESUMO - Este estudo baseia-se no princípio de que índices de vegetação (IVs), derivados do modelo de cores RGB obtidos de
imagens digitais, podem ser usados para caracterizar assinaturas espectrais e classifi car pastos de Brachiaria brizantha cv. Xaraés
segundo o status de nitrogênio (N). A partir de dados colorimétricos obtidos de imagens de lâminas foliares adquiridas em campo, três
redes neurais artifi ciais foram avaliadas quanto ao desempenho na classifi cação do status N: Feedforward Backpropagation (FFBP),
Cascade Forward Backpropagation (CFBP) e função de Base Radial (RBFNN). Quatro taxa s de fertilização nitrogenada foram aplicadas
para gerar contrastes no teor de N nos tecidos das plantas. As folhas mais jovens completamente expandidas de 60 perfi lhos foram
destacadas das plantas a cada ciclo de rebrotação de 28 dias, sendo as imagens das folhas e teor de N foliar determinados. As amostras
foram classifi cadas em defi cientes (< 17 g N kg-1 de matéria seca (MS)), moderadamente defi cientes (de 17,1 a 20,0 g N kg-1 MS) e sufi ciente
(> 20,1 g N kg-1 MS). Os IVs foram selecionados pela análise de componentes principais e o desempenho das redes avaliados pela
acurácia. As acurácias nas classifi cações obtidas pelas redes foram de 88%, 86% e 79% para FFBP, CFBP e RBFNN, respectivamente,
indicando que as assinaturas espectrais podem ser determinadas a partir de imagens adquiridas em campo. Assim, o método proposto
pode ser utilizado para desenvolver um software de monitoramento do status de N em tempo real, fornecendo uma ferramenta rápida e
econômica para defi nir o momento e quantidade de fertilizantes nitrogenados, conforme demanda da pastagem.
Palavras-chave: Processamento de i magens. Sensoriamento remoto. HSB. Assinatura espectral.
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INTRODUCTION

Brazil has the larges t cattle herd in the world, with
approximately 90% of it raised and fi nished on pastures.
However, livestock production has been considered a
major contributor to greenhouse gas (GHG) emissions
(MAZZETTO et al., 2015). Despite the productivity gains
observed in recent decades, the challenges for Brazilian
pasture systems still remain, mainly by low productivity
and soil fertility, due to the lack of nutrient replacement
and degradation of pastures (SANTOS; PRIMAVESI;
BERNARDI, 2010; SILVA et al., 2017). In this context,
while for some countries reducing the annual amount of
fertilizer applied on pastures may play a signifi cant role in
the mitigation effort thereof, in Brazil, the intensifi cation
of pasture-based livestock production is thought to lead to
higher animal performance, reduced time until slaughter,
better soil fertility and increased soil carbon stocks, thus
reducing the pasture area and GHG emissions per kg of
product (CARDOSO et al., 2016).

Nitrogen is well known to be essential for pasture
growth and productivity by its stimulus to the tillering, leaf
growth and photosynthetic processes (YASUOKA et al.,
2018). Thus, real-time identifi cation of the N status is essential
for increasing the effi ciency and ensuring environmental
quality, once insuffi cient N supply leads to lower chlorophyll
content, less biomass production and poor soil covering;
and their excessive application can lead to soil, water and
environment pollution (CARDOSO et al., 2016; GAUTAM;
PANIGRAHI, 2007; WANG et al., 2014).

Remote sensing techniques have emerged as
important tools for monitoring crop growth, plant stress
and its nutritional status, and most of those techniques
have been based on image analysis. Those application
rely on the principle that relationship among the spectral
refl ectance of the leaves or canopy may be correlated
with canopy growth traits, plant nutrients status and
productivity, and the relationships can be described by
exploring information contained in images (WANG et al.,
2014). Many research efforts have been dedicated to the image
processing software development capable of determining the
plant nutrient status through images acquired by scanners,
commercial digital cameras, or even by cellphone and
smartphone cameras, generating information to support
decision making on fertilization strategies (BARESEL et al.,
2017; HU et al., 2013; LEE; LEE, 2013; MOHAN; GUPTA,
2019; ZILBERMAN et al., 2018).

Taking into account that N is one  of the main
structural components of chlorophyll, and that changes
in the N content of the plant are visually expressed by
alterations in the color, the leaf color has been recognized
as one of the most sensitive indicator of the plant N status
(TEWARI et al., 2013). However, successful prediction

of plant nutritional status is largely dependent upon
the identifi cation of wavelength refl ectance (spectral
signatures) or any color index (vegetation indices, VIs),
that strongly correlate with the plant N content.

The selection of key IV’s aiming at to define
the plant’s N status or their N content has been greatly
improved by the use of multivariate statistical methods
(Yi et al., 2007), such as principal component analysis
(PCA), integrated to the processing, identifi cation of
patterns and classifi cation by using artifi cial neural
network (ANN) models. The ANN models have been
widely used as tools for dynamic modeling (SHARABIANI;
NAZARLOO; TAGHINEZHAD, 2019) in the programming
of the computer vision systems, being capable of associating
several image spectral information with target attributes
(crop attribute) (HE et al., 2011; SAFA et al., 2019).

Based on this background, the main goal was to
test the prediction of N status from images of leaves
of Brachiaria brizantha ‘Xaraes’ using the red, green
and blue components and their derivative indices
(vegetation indices) applied the artifi cial neural networks.

MATERIAL AND METHODS

Experimental fi eld treatments

The experiment was carried out at the Faculty
of Animal Science and Food Engineering (FZEA),
University of São Paulo, Pirassununga (21o57’31’’ S,
47o27’07’ W, 620 m a.s.l.), SP, Brazil. In the experimental
area, the slope is moderately undulating and the soil is
classifi ed as Typic Eutrudox (USDA Soil Taxonomy) or
dystrophic Red Latosol (EMPRESA BRASILEIRA DE
PESQUISA AGROPECUÁRIA, 2018). Climate in the
region is Cwa, sub-tropical with dry winter, and the annual
average rainfall is 1,343 mm (EMPRESA BRASILEIRA
DE PESQUISA AGROPECUÁRIA, 2019). The monthly
average temperature during the experimental period
(December 2017 to March 2018) was 23.7oC and the
monthly rainfall corresponded to 151.6, 82.0, 209.8
and 148.2 mm during the successive evaluation cycles.

The vegetal species Brachiaria brizantha
‘Xaraes’ was established in 2012, and the experimental
area comprised of 12 plots of 20 m2 (5 m x 4 m) each.
Due to possible differences in the initial soil fertility,
the experimental area was organized in blocks, from
which soil samples were collected at 0-20 cm soil depth
in October 2017. Average soil chemical characteristics
for the 0–20 cm layer were: pH CaCl2 = 4.5, 5.2 and 4.9;
organic matter = 21.4, 24.4 and 24.1 g kg–1; P (resin) =
12.0, 13.0 and 10.0 mg.dm–3; Ca = 9.0, 21.0 and 15.0
mmolc.dm–3; Mg = 3.0, 6.0 and 3.0 mmolc.dm–3;  K =
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2.2, 2.4 and 2.8 mmolc.dm–3; H + Al = 33.4, 26.8 and 26.5
mmolc.dm–3; soil base saturation = 30, 52 and 44%,
respectively for blocks 1, 2 and 3 and composed by
64 g kg–1 clay, 46 g kg–1 silt and 31 g kg–1 sand . The
results were used to determine the requirements of
fertilization aiming at soil nutrients correction.

For homogenization of the experimenta l plots
and preparation for the beginning of the experiment,
mowing was carried out in October 20, 2017.
Afterwards, the plants were cut every 28 days, using
a manual mower, leaving a residual height of 15 cm
(PEDREIRA; PEDREIRA; SILVA, 2007). During the fi rst
regrowth cycle (October 20 to November 15, 2017), soil
nutrients correction was performed in each plot by using
the amount of 45 kg P2O5 ha-1 (Triple superphosphate,
43% P2O5) and 30 kg K2O ha-1 (Potassium chloride,
60% K2O). The remaining phosphorus and potassium
fertilizers were applied in December 01, 2017, by
using the amount of 15 kg P2O5 ha-1 and 10 kg K2O ha-1.

The experimental evaluations were carried
out from the second harvest onwards and, thus, the
monitored cycles corresponded to the periods: (1) from
November 15 to December 13, 2017; (2) December 13,
2017 to January 10, 2018; (3) January 10 to February 9, 2018
and (4) February 9 to March 10, 2018. Field treatments
consisted of four nitrogen fertilization rates, defi ned in
order to generate contrasting N content in the plants,
as follows: no nitrogen (N0), 15 (N15), 30 (N30) and
45 (N45) kg of N ha-1 per cutting by using ammonium
nitrate (32% N), and fertilizers were applied after each
cutting. The experiment used a completely randomized
block design, with three replications, and the blocking
criterion was the initial soil fertility.

Leaf sampling, image acquisition and N content
determination

The youngest completely expanded leaves
(diagnostic leaf) from 60 tillers randomly chosen into
the plots were detached from plants. Five samples
composed of five leaves, which were placed side by
side on an image-collecting table, were used during
the image acquisition procedure. The image-collecting
table was built using a black matte background, with
a fixed support for the cellphone camera to acquire
images, positioned at a fixed height of 23 cm from the
base. Five images per plot from different g roups of
leaves were acquired from 08:00 to 11:00 a.m. on sunny
days at each regrowth cycle. In order to mimetize the
possibilities of field c apturing, images were acquired
in shade, but without other procedures of environment
lighting standardization. A 16-megapixel back camera
of a Lenovo-Motorola K6 Plus cellphone set to
automatic focus adjustment and flash off was used for

images acquisition. Thus, the dataset of digital images
 w  as composed by 240 images (12 plots x 5 images x 4
regrowth cycles). However, ten images were removed
from the dataset due to incongruencies in the images
acquisition (overlapping of leaves), which affected
their associated R, G and B values.

The digital images were stored in JPEG format
(24 bits color) with resolution of 800 x 600 pixels.
After image acquisition, the leaves from each plot were
grouped (composed sample), then put into an oven to dry
at 65 oC until constant weight, and subsequently ground
using a 1 mm sieve. Nitrogen content was determined by
the Kjeldahl method after acid digestion (NOGUEIRA
et al., 1998), and the results were expressed in g N kg-1

leaf dry weight (DW). A total of 48 leaves samples was
included in the dataset of N content, and for each sample
there were 5 associated images.

The critical N content for a given crop represents
its minimum N in the leaves essential to attain at least 80%
of the maximum crop growth rate, and it is represented by
a negative power function called “dilution curve” (ATA-
UL-KARIM et al., 2017). Costa et al. (2015) found that
the critical N content of xaraes palisadegrass varied
from 18.0 to 19.4 g N kg-1 DW, respectively to the dry and
rainy seasons, when testing a range of N fertilization rates
from 50 to 400 kg N ha-1. Based on these values, and for
the purpose of the present experiment, it was defi ned that
the plants showing an N content below 17 g N kg-1 DW
were deficient. Plants showing a range from 17.1 to
20.0 g N kg-1 DW were considered moderately defi cient,
while plants above 20.1 g N kg-1 DW were considered as
having a suffi cient N content.

Image processing and vegetation indices (VIs)
determination

First, the images were pretreated by applying a
low-pass fi lter (median fi lter), in order to remove noise
(ZHU; HUANG, 2012). This nonlinear fi lter increases
impulse noise ability while maintaining good edge keeping
characteristics, eliminating lines and other fi ne details that
do not belong to the image.

Next, the image was converted to grayscale (h)
and the regions of interest (ROI), pixels with leaves
information, were obtained by thresholding method
(Otsu), Eq. (1).

                                                                                                               (1)

where: h is the image in grayscale; I, segmented image,
(x, y), pixel position and T, thresholding value obtained
by using Otsu method.

By applying a scanning algorithm (pixel to pixel),
ROI was converted to the corresponding color of the
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leaves by taking the original RGB values of each pixel,
and the background was converted to white. The processed
image was then subjected to a pixel-by-pixel analysis,
from which the average values of R, G and B of the entire
image were acquired, and from these values fi fteen other color
indices were calculated (or vegetation indices, Table 1), being
the generated image saved in JPEG fi le. All the functions,
scripts and user interfaces were implemented in Java
language, using the NetBeans platform, version 8.2.

Principal component analysis (PCA)

A principal component analysis (PCA) was carried
out in order to remove the lower-level components without
any notable loss of information contained in the original
dataset (YI et al., 2007) using the Minitab® Software
(version 2018). The dataset included in the PCA analysis
consisted of 18 input variables: R, G and B intensities
extracted from the images and their normalized values
(RN, GN and BN) as well as the hue (H), saturation (S) and
brightness (Br) parameters, besides the vegetation indices
VARIgreen, ExG, ExR, MExG, ExGR, CIVE, VEG, COM
and DGCI (Table 1). The input variables were standardized
to a mean of 0 and variance of 1, and signifi cant variables
were considered when eigenvectors were higher than 0.28.
After the exploratory analysis, 12 indexes were selected
for the dataset of the neural networks.

Artifi cial Neuronal Network (ANN) implementation

Based on ANN technique three different models were
built using the MATLAB® (Matrix Laboratory) software,
version 2015a. The ANN tested were radial basis function
(RBFNN), multilayer feedforward backpropagation
(FFBP), cascade forward backpropagation (CFBP). For
FFBP and CFBP, the topology was tested using only one
hidden layer and 5, 10 or 15 neurons, which were empirically
chosen, and the learning algorithm Levenberg-Marquardt
(LM) was used for such ANN models. The input dataset
was composed by the 12 vegetation indexes selected by
PCA and the nitrogen fertilization rates. Combinations
among two transfer functions were also tested, TANSIG and
LOGSIG (YI et al., 2007, 2010), aiming at identifying the
enhanced network arrangement. However, the LOGSIG
function showed poor performance and was removed
from the test procedures.  The learning rate used in the
training was 0.1 and the number of iterations was 1.500.

The performance of the ANN models was evaluated
through the coeffi cient of determination (R2) (Eq. 2) and
Accuracy (Eq. 3). For  network training, 70% of the data were
used, the remaining 30% was used for network validation
(15%) and performance testing (15%), and observations
for validation and test were randomly selected. To test
the RBFNN, the initial center value determined from

Table 1 - Vegetation indices (VIs) based on the RGB color space extracted from images, used to determine the N status in Brachiaria
brizantha ‘Xaraes’

1 GN, RN and BN represent normalized Green, Red and Blue, respectively; H, S and Br represent hue, saturation and brightness, respectively; VARIgreen
represents the Visible Atmospherically Resistant Index; DGCI represents the Dark Green Color Index; ExG, ExR and ExGR represent excess of green,
excess of red and excess of green minus excess of red; MExG is the modifi ed excess of green; CIVE represents Colour Index of Vegetation Extraction;
VEG represents the Vegetative Index and COM a Combined Index

¹VIs Formulae References

GN GN = G/(R+G+B) Yang et al., (2015)

RN RN = R/(R+G+B) Yang et al., (2015)

BN BN = B/(R+G+B) Yang et al., (2015)

H
H= 60*{(G-B)/[max(R,G,B)-min(R,G,B)]}, if max(R,G,B)=R; or 60*{2+{(B-R)/
[max(R,G,B)-min(R,G,B)]}}, if max(R,G,B)=G; or 60*{4+{(R-G)/[max(R,G,B)-

min(R,G,B)]}}, if max(R,G,B)=B
 Wang et al., (2014)

S S = (max(R,G,B)-min(R,G,B))/max(R,G,B) Wang et al., (2014)

Br Br = max(R,G,B)/255 Wang et al., (2014)

VARIgreen VARIgreen = (G-R)/(G+R-B) Gitelson et al., (2002)

DGCI DGCI = [(Hue − 60)/60 + (1 − Saturation) + (1 − Brightness)]/3 Karcher and Richardson (2003)

ExG ExG = (2*GN)−RN−BN Guijarro et al., (2011) and Yang et al., (2015)

ExR ExR = (1.4*RN)−GN Guijarro et al., (2011)

ExGR ExGR = ExG – ExR Guijarro et al., (2011) and Yang et al., (2015)

MExG MExG = 1.262*G - 0.884*R - 0.311*B Burgos-Artizzu et al., (2011)

CIVE CIVE = 0.441RN – 0.811GN + 0.385BN + 18.78745 Guijarro et al., (2011) and Yang et al., (2015)

VEG VEG= GN/(RN
0.667)*(BN

0.333) Guijarro et al., (2011) and Yang et al., (2015)

COM COM = 0.25ExG + 0.30ExGR + 0.33CIVE + 0.12VEG Yang et al., (2015)
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the input data taken randomly was initiated using the
K-means algorithm, the Euclidean distance norm was
defi ned to measure the  distance between input vector P
and node j of the hidden layer, in which the spread value
was 1 and the goal was 0.0001, and a Gaussian function
transferred Euclidean distance to give output to each node
(RAHMAT; NABABAN, 2018).

                                                                                                                          (2)

where: R2 is the coeffi cient of determination; SQReg is
the variation in Y explained by the adjusted regression;
SQTotal is the total variation in Y.

                                                                                             (3)

where: TP is true positive; TN is true negative; FP is false
positive; FN is false negative.

RESULTS AND DISCUSSION

Images spectral signature of xaraes palisadegrass in
response to leaf N content

Traditional procedures to monitor the N content
based on laboratory analysis are time consuming, but they
have been widely replaced by other faster and cheaper
tools, such as the leaf color charts (INTARAVANNE;
SUMRIDDETCHKAJORN, 2015) and/or portable
chlorophyll meters (SCHLICHTING et al., 2015).
Additionally, more recently, a wide range of remote
proximal sensing technologies have been successfully
employed (VERGARA-DÍAZ et al., 2016) for estimation
and monitoring the N status in various crops.

For these purposes, the identifi cation of the
spectral signature of the vegetation provides key
parameters for detection of the plant nutritional status
(SRIDEVY et al., 2018). However, the evaluation of
spectral signature requires spectrometric equipment
and multispectral sensors, according the wavelengths of
interest, which are normally costly. According to Vesali
et al. (2015), the recent development of smartphones has
opened new opportunities for high quality image capturing
and data generation, making possible to use them for color
analysis, with potential to substitute both spectral indices
and chlorophyll measurements since information from the
basic colors of red, green and blue (RGB) can describe the
leaf spectral signature with similar accuracy.

In a general way, plants adequately supplied with
N are greener because chlorophyll is a poor absorber of
green and near-infrared (NIR) portions of the spectrum,
and then the green light band (around 550 nm) is refl ected
more effi ciently. In addition, the higher the photoactive
pigments and chlorophyll content, the higher the
absorption at blue and red wavelengths (ZILBERMAN
et al., 2018). The blue component has been less variable
across gradients of leaf N or leaf pigments content in
several species (EL-AZAZY, 2018; HU et al., 2013). In
the present experiment, the R and G components varied,
respectively, from 151.1 ± 1.03 and 176.4 ± 1.04 in
images representing defi cient plants (< 17.0 g N kg-1 leaf DW)
to 140.9 ± 0.83 and 164.4 ± 0.78 in images representing plants
with suffi cient N (> 20.1 g N kg-1 leaf DW). However, there
was a slight increase in the values of the blue component
from 109.1 ± 1.06 to 118.4 ± 1.44 for the respective
classes (Table 2 and Figure 1a).

VIs of images Suffi cient plants Moderately defi cient plants Defi cient plants p-value Quadratic model R2 Quadratic model
R 140.9 ± 0.83 143.9 ± 0.85 151.1 ± 1.03 < 0.0001 0.26
G 164.4 ± 0.78 167.2 ± 0.90 176.4 ± 1.04 < 0.0001 0.31
B 118.4 ± 1.44 118.1 ± 1.22 109.1 ± 1.06 < 0.0001 0.12
RN 0.33 ± 0.0008 0.33 ± 0.0005 0.34 ± 0.0007 < 0.0001 0.47
GN 0.39 ± 0.001 0.39 ± 0.001 0.40 ± 0.0009 < 0.0001 0.26
BN 0.28 ± 0.002 0.27 ± 0.002 0.25 ± 0.001 < 0.0001 0.39
H 91.9 ± 0.62 88.8 ± 0.46 82.9 ± 0.39 < 0.0001 0.47
S 0.28 ± 0.008 0.29 ± 0.007 0.38 ± 0.005 < 0.0001 0.34
Br 0.64 ± 0.003 0.66 ± 0.004 0.69 ± 0.004 < 0.0001 0.31
1ExG 0.16 ± 0.005 0.17 ± 0.004 0.21 ± 0.003 < 0.0001 0.24
ExR 0.077 ± 0.001 0.079 ± 0.001 0.080 ± 0.001 = 0.0293 0.031
CIVE 18.7 ± 0.002 18.7 ± 0.002 18.7 ± 0.001 < 0.0001 0.23
VEG 1.24 ± 0.007 1.24 ± 0.007 1.30 ± 0.005 < 0.0001 0.20

SQTotal
gSQR Re2 =

Table  2  - Variations of vegetation indices (VIs) according to the defi cient, moderately defi cient, suffi cient classes, p-values and
coeffi cient of determination for quadratic models (R2)

( )
)( FNFPTNTP

TNTPAccuracy
+++

+
=
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1 Only the vegetation indices identifi ed in the principal component analysis are shown. Leaves were considered defi cient when showing a N content
below 17 g N kg-1 DW; moderately defi cient when showing a range from 17.1 to 20.0 g N kg-1 DW, and suffi cient when showing a leaf N content above
20.1 g N kg-1 DW

COM 6.39 ± 0.003 6.39 ± 0.003 6.41 ± 0.002 < 0.0001 0.18
VARI 0.13 ± 0.002 0.12 ± 0.003 0.12 ± 0.002 = 0.0006 0.06

Continuation Table 2

Figure  1 - (A) Schematic diagram of the variations in chlorophyll a and b and carotenoids contents, the respective leaf spectral
signature and the corresponding changes in the RGB color model of the images, representing plants with low N content (to the right)
and high N content (to the left). Based on the responses shown in Hu et al. (2013), Rigon et al. (2016) and El-Azazy (2018). (B)
Leaf samples and their variations in the RGB color model according to the different N status. Leaves were considered defi cient when
showing a N content below 17 g N kg-1 DW; moderately defi cient when showing a range from 17.1 to 20.0 g N kg-1 DW, and suffi cient
when showing a leaf N content above 20.1 g N kg-1 DW
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The same pattern of variation in the RGB components
according to the leaf N gradients registered in this experiment
was described for chlorophyll a, chlorophyll b and carotenoids
by Rigon et al. (2016) in soybean (Glycine max L.) leaves,
by Hu et al. (2013) in rice (Oryza sativa L.), and by Yadav,
Ibaraki and Gupta (2010) in micropropagated potato (Solanum
tuberosum L. cv. Benimaru) plants. The relationship between
the individual RGB components and the leaf N followed a
quadratic model, reaching the maximum value of red (139.4)
at 24.4 g N kg-1 DW and green (162.4) at 25.0 g N kg-1 DW,
whereas a minimum value of the blue component (120.8)
was reached at 25.8 g N kg-1 DW. The quadratic relationships
observed may explain the poor correlations registered among
the individual RGB components and the leaf N, even with the
wide range in the leaf N of the dataset (Table 2).

I t is important to point out that, despite the general
processes of light absorbance and refl ectance for different
wavelengths are well described in the literature, spectral
signature is species-specifi c once it integrates plant physical
(leaf thickness, serosity, leaf angle in the canopy) and
physiological (e.g. pigments content) traits. It also interacts
with environmental conditions, referred to in this paper as
light conditions (wavelengths refl ected or scattered by the
surrounding vegetation, soil or clouds). Light conditions
may remain ‘printed’ on the acquired images, particularly

during sunrise/sunset, where a maximum of sun light
spectrum shifts towards the red, which may change
the color sensations and surface or crop color in digital
imaging (ZILBERMAN et al., 2018). Mata-Donjuan
et al. (2012) highlighted that the RGB color space was
not originally conceived for image processing but it was
designed for computer graphics and, as a result, the RGB
color space is very susceptible to light conditions during
image acquisition procedures. According to Karcher and
Richardson (2003), the intensity of red and blue can change
the perception of greenness in a given image. In view of
that, the HSB color space was used in a complementary
way with the RGB color space in order to analyze possible
effects of light conditions in the images acquired.

The exploratory analysis using the PCA identifi ed
that 88.6% of the dataset variance was explained by
two principal components (Table 3), selecting 12 VIs
(eigenvalues higher than 0.28). The fi rst component
explained 65% of the dataset variance and consisted
of GN, BN, Saturation (S), ExG, CIVE, VEG and COM.
The second component explained 23.6% of the dataset
variance and it was comprising the R and G intensities
of the images, Brightness (Br), ExR and VARIgreen.   The
normalized values of the blue channel (BN) and the CIVE
showed negative scores, whereas the normalized values

Table 3 - Eigenvalues, eigenvectors and scores of the vegetation indices (VIs) selected for the fi rst two principal components (PRIN)

PRIN1 PRIN2
Eigenvalues 11.70 4.25
Proportion 0.650 0.236
Accumulated 0.650 0.886
Criterion for cutting 0.28 0.28
1VIs Eigenvectors
R 0.045 0.440
G 0.130 0.319
GN 0.289 -0.071
BN -0.284 -0.070
S 0.290 0.022
Br 0.130 0.319
ExG 0.289 -0.071
ExR -0.120 0.391
CIVE -0.288 0.080
VEG 0.284 -0.109
COM 0.282 -0.125
VARIgreen 0.086 -0.405

1 R, G, GN and BN represent Red, Green, normalized Green and normalized Blue, respectively; S and Br represent saturation and brightness, respectively;
ExG and ExR represent excess of green and excess of red, respectively; CIVE represents Colour Index of Vegetation Extraction; VEG represents the
Vegetative Index; COM is a Combined Index and VARIgreen represents the Visible Atmospherically Resistant Index
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of the green channel (GN), the saturation values of the
images (S) and the vegetation indices ExG, VEG and
COM showed positive scores for the fi rst component.
For the second component, VARIgreen showed negative
scores, while the pure values of red (R) and green
channels (G), Brightness (Br) of the images and the
excess of red (ExR) showed positive scores.

The PCA identifi ed a positive correlation among
GN and saturation, but both were negatively associated
with BN. These relations can be observed by the increased
BN intensity associated with decreased GN intensity and
saturation as the leaf N increased. The observed saturation
is related to the purity of the color, and less saturated
images will appear closest to a gray color (near to zero).
However, saturation not only depends upon the color of
the subject or object but also upon the wavelengths of
incident light, which make a given color in the image less
saturated. Moreover, it is important to point out that in fi eld
images, under inconstant environmental light conditions,
saturation is not uniform throughout the image. Karcher
and Richardson (2003) showed that lower saturation
levels appeared darker to the eye, and this was the case of
images representing plants with suffi cient N in the present
experiment (Figure 1b). This pattern was also observed
by Yadav, Ibaraki and Gupta (2010) when estimating the
chlorophyll content in leaves of micro propagated potato
(Solanum tuberosum L. cv. Benimaru) plants.

Brightness was also observed to be positively
correlated with the red and green components, and with
ExR in the images (Table 3), which was detected in the
second component of the PCA. The brightness component
is an indication of lightness or darkness of a color. Since
it measures the proportion of brightness considering the
maximum value between the RGB components compared
to the maximum possible for the color (255), in our
dataset this measurement refl ects the intensity of the green
component in the images. Similarly, Yang et al. (2015)
showed that image spectral properties of brightness and
saturation were negatively correlated with the chlorophyll
content of micro propagated potato plants.

ANN topology and performance

With the selection of twelve VIs obtained by
the PCA (Table 3), three types of neural networks were
implemented. Yi et al. (2010) compared the prediction
power of leaf N content in rice by using stepwise
multiple linear regression (MLR) models and a neural
network FFBP combined with two methods of selecting
the input variables. Firstly, all spectral refl ectance
data were considered, but the maximum number of
independent variables selected in the MLR model were
set to fi ve. In the second method, the scores of the fi rst
fi ve principal components were used as independent

variables. In both methods for selecting input variables,
ANN modeling showed greater prediction power than
MLR models, and the best performance was observed
when using PCA to select the input variables (R² = 0.94
for calibration and R2 = 0.89 for validation). A higher
coeffi cient of determination and lower RMSE were
also obtained using neural network compared to MLR
models in Wang et al. (2009) f or estimating the N
concentration of oilseed rape (Brassica napus L.) from
canopy refl ectance data. According to the authors above,
the reason for lower performance when using MLR is
that the relationships between canopy refl ectance and
N concentration are nonlinear. Thus, the estimated N
reaches a plateau and values would be underestimated
at nitrogen concentrations greater than 2.5 when using
MLR models. Zhang et al. (2012) observed that, compared
to MLR models, ANNs had a strong advantage to fi t the
non-linear relationships between spectral signatures and the
crude protein content in rice grain, reaching an R2 = 0.92. The
authors also highlighted that PCA was very useful as a
method of data reduction, once some spectral parameters
often contain redundant information.

The VIs selected by the PCA and the fertilization
rate were inserted into the network as input data,
while the N classes were adopted as the output of the
network. Once the input and output parameters of the
ANNs were defined, they were trained and tested by
varying the type of network and the number of neurons
in the hidden layer (Table 4). Th e best performance for
the ANN tested were obtained with FFBP and CFBP both
with the topology 13-5-1, and RBFNN with 13-148-1. It can
be observed that the performance of FFBP compared
to that of CFBP was slightly better with a maximum
coefficient of determination (R2) of 0.83 and accuracy
of 88% compared to R² of 0.81 and accuracy of 86%
for CFBP. When the RBFNN network was implemented,
the performance reached R2 = 0.77 and accuracy of 79%.
Artificial neural networks have been widely used for
estimating N status, chlorophyll and pigment contents
in several species (MOHAN; GUPTA, 2019; SAFA
et al., 2019; ZHOU et al., 2019; YI et al., 2010),
and also to classify and predict a variety of other
parameters of vegetation (SHARABIANI; NAZARLOO;
TAGHINEZHAD, 2019; ZHANG et al., 2012). For this
purpose, feedforward neural networks have been the
most popular structures for modeling complex input-
output relationships, in which the backpropagation
learning algorithm is a well-known method.

One of the main differences thereof from the
FFBP network is that in CFBP network there is a direct
connection between input and output layers because each
neuron in the input layer is attached to each neuron in the
hidden layer. Besides, it is attached to each neuron in the
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Network Topology AF TF LR
Performance

R2 Train. R2 Valid R2 Test R2 General 3Accuracy (%)
FFBP 13-5-1 Tansig 1LM 0.1 0.85 0.81 0.79 0.83 88
CFBP 13-5-1 Tansig LM 0.1 0.79 0.94 0.84 0.81 86
FFBP 13-10-1 Tansig LM 0.1 0.78 0.82 0.77 0.79 80
CFBP 13-10-1 Tansig LM 0.1 0.79 0.81 0.82 0.80 82
FFBP 13-15-1 Tansig LM 0.1 0.77 0.76 0.86 0.79 80
CFBP 13-15-1 Tansig LM 0.1 0.81 0.83 0.81 0.81 84
²RBFNN 13-148-1 Radial Base 2RBF - 0.78 0.77 0.78 0.77 79

Input data (13) – R, G, GN, BN, S, Br, ExG, ExR,  CIVE, VEG, COM, VARI and fertilization rates. ¹ Levenberg-Marquardt (LM). 2 Radial basis function
neural network with Radial Basis training function. The initialization of the initial center value determined from the input data was taken randomly,
using the k-means algorithm; the Euclidean distance norm was defi ned to measure distance between input vector P and node j of the hidden layer, in
which spread value was 1 and the goal 0.0001, and a Gaussian function transferred Euclidean distance to give output to each node. 3 Network accuracy
in data prediction

Table 4 - Summary table showing the performance of ANN model’s topologies and internal parameters, where AF is the activation
function, TF is the training function and LR is the learning rate

output layer through a weight connection, meaning that
each layer of neurons is related to all previous layers of
neurons. Sharabiani, Nazarloo and Taghinezhad (2019)
compared the performance for prediction of the protein
content in winter wheat (Triticum aestivum L.) from
canopy spectral refl ectance using FFBP and CFBP neural
networks. The performance was similar between them,
but higher prediction power for both FFBP and CFBP was
obtained when using the learning algorithm Levenberg-
Marquardt (LM) compared to BFGS Quasi-Newton (BFG).

Vegetation traits have been accurately predicted
using ANN models from the RGB in field images.
Mohan and Gupta (2019) tested the performance of
ANN models for prediction of leaf chlorophyll contents
in rice from images acquired with a smartphone under
natural light. The input data were based on several
VIs calculated from the RGB and a combination of
HSV and RGB color space models, and the authors
above also observed improved efficiency of ANN
models compared to MLR to predict leaf chlorophyll
contents using RGB features. Similarly, Vesali et al.
(2015) reported that ANNs were effective to estimate
SPAD values accurately (RMSE = 5.1 and R2 = 0.82)
using image features extracted from the RGB and HSB
color spaces as input data, even considering the fact
that the measurements had been made under a range of
different environmental conditions.

Although it has been well known that ANN
modelling has a strong ability to learn, being effective
to calibration, simulation and prediction of data, and is
a convenient tool for depicting sophisticated non-linear
systems and non-linear relationships that cannot be
described by mathematical expressions (LI et al., 2017),
the use of radial basis function neural networks (RBFNN)

is much less frequent for agricultural applications. The
RBFNN is a typical three-layer feedforward network
composed by an input layer, a nonlinear hidden layer, and
a linear output layer (CHEN; COWAN; GRANT, 1991),
which was built  into a distance criterion with respect to
a center. Two processing layers are required, in which,
fi rstly, the input is mapped onto each radial basis function
in the ’hidden’ layer. The radial basis function defi nes a
center and a radius, or a spread, to each neuron which
is determined by training, and the performance of an
RBFNN is widely affected by the chosen centers (CHEN;
COWAN; GRANT, 1991). In the present experiment, a self-
organized selection of centers using K-means clustering
and Euclidean distance criterion was implemented. The
second step is to estimate the connection weights, which
were made using a Gaussian kernel function. Gautam and
Panigrahi (2007) reported higher performance of RBFNN
(R2 = 0.82) compared to FFBP (R2 = 0.76) for predicting
leaf N content in corn plants under fi eld conditions from
spectral information in green and NIR bands. However,
in the present experiment the accuracy (79%) obtained
by using RBFNN was lower than any topology using
FFBP and CFBP (Table 4).

The results showed that the proposed method can
be used for software development aimed at monitoring N
status in real time, providing a fast and inexpensive tool
capable of defi ning the time of application and the amount
of fertilizer in accordance with pasture demand.
Nitrogen fertilization management

For tropical pastures in Brazil, the traditional
strategies for applying nitrogen fertilization are based
on a fixed-rate split N at regular intervals (monthly) or
applied after each grazing. Some intensive production
systems have defined N fertilization rates based on an
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empirical relation with the stocking rates expected,
where 40 to 50 kg N ha-1 are applied for each animal
unit (450 kg of animal live weight). According to
Santos, Primavesi and Bernardi (2010), the total annual
amount of N varies from 40 to 300 kg ha-1,  but  there  are
no recommendations based on soil analysis or plant
demand. The general relationship among N fertilization
rates and leaf N content for the overall growth season
was described by an exponential function (NLeaf =
15.610.0081*NFertilizer, R2 = 0.60), and it identifi ed a requirement
of approximately 30 to 35 kg ha-1 N after each cutting
during the growth season. However, plants showed
requirements for higher fertilization rates to reach
the critical N content during the first regrowth, at the
beginning of the growth season (Table 5). This period
is characterized by an intense population renewal,
when the major part of the tillers that survived the dry
season die (CAMINHA et al., 2010) and are replaced by
young and highly productive tillers (PAIVA et al., 2012).
The above-ground growth is coordinated with a faster
accumulation of root biomass, thus driving high N
captures from the soil (KAMIJI et al., 2014). At that
regrowth cycle, plants that received less than 45 kg ha-1

of N after cutting were not able to reach an amount of
N to fit in the sufficient class. In the following two
regrowth cycles, lower fertilization rates were required,
and the supply of 30 kg ha-1 N after cutting was enough
to reach the sufficient class; whereas during the last
regrowth cycle of the growth season only 15 kg ha-1 N
after cutting could be recommended (Table 5).

Based on this approach and considering the
experimental conditions of the site and the soil type,
xaraes palisadegrass pastures would require a total
amount of N fertilizer of approximately 120 kg ha-1

N during the growth season, but split at different
rates, following the processes occurring at the plant

Table 5 - Nitrogen content (mean – standard error, g N kg-1 leaf dry matter) of the sampled leaves according to the resulting classes of
N status for each regrowth cycle, and the estimated fertilization rates (kg ha-1 of N per cutting) to attain suffi ciency level for Brachiaria
brizhanta ‘Xaraes’

¹ Leaves were considered defi cient when showing a leaf N below 17 g N kg-1 DW; moderately defi cient when showing a range from 17.1 to 20.0 g N kg-1 DW, and
suffi cient when showing a leaf N above 20.1 g N kg-1 DW. ² Estimated N rate (ENR) calculated from equation ENR=[(1/0.0081)*ln(20/Ncontent of the class)]

population level. Shukla et al. (2004) pointed out that
more than 60% of applied N can be lost when using
fertilization at fi xed-rates due to the lack of synchrony of
plant N demand and N supply. For a rice (Oryza sativa L.)
and wheat (Triticum aestivum L.) cropping system, the
authors showed  that fixed-time split N applications
were not adequate for maintaining high yields and
efficient use of N. On the other hand, when the time
of application and the amount of fertilizer were carried
out according to crop demand, the rice–wheat systems
total productivity and farmer’s profit were enhanced,
resulting in net returns of 19 to 31% higher compared
to that of fixed-time N applications. Bhatia et al. (2012)
also reported environmental benefits of this approach
for a rice–wheat system in India, with a reduction of
nitrous oxide emissions by 16% and methane by 11% over
the conventional split application of urea, concluding that
tools for real-time N management represent a win–win
option, thus reducing GHG emission and synchronizing N
application with crop demand.

CONCLUSIONS

The ANNs showed good performance in the
prediction of the N status (defi cient, moderately defi cient,
or suffi cient) of xaraes palisadegrass (Brachiaria brizantha
‘Xaraes’) pastures, indicating that image spectral
signatures can be accurately determined from fi eld images
acquired with a cellphone camera. It was possible to reach
a right classifi cation rate (Accuracy) of 88% when using a
FFBP artifi cial neural network, 86% when using a CFBP
network and 79% when using a RBFNN network. All
ANN models had a good power for classifying leaf images
according their N status. However, the best performance
was obtained with FFBP network.

Regrowth cycle
Classes of N status¹ Period 1 (December) Period 2 (January) Period 3 (February) Period 4 (March)
(D) Defi cient 15.0 ± 0.25 15.2 ± 0.34 15.8 ± 0.38 16.9 ± 0.48
Estimated N rate to attain suffi ciency² 35 35 30 20
(MD) Moderately defi cient 18.6 ± 0.38 18.2 ± 0.49 18.5 ± 0.27 18.6 ± 0.41
Estimated N rate to attain suffi ciency 30 30 20 15
(S) Suffi cient 19.8 ± 0.68 22.7 ± 0.27 22.8 ± 0.39 23.6 ± 0.27
Estimated N rate to attain suffi ciency 0 0 0 0
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