EFEITOS DA PROFUNDIDADE DE PLANTIO NA GERMINAÇÃO DE SEMENTES DE JOJOBA, SIMMONDSIA CHINENSIS (LINK) SCHNEIDER *

RAIMUNDO GLADSTONE M. ARAGÃO **
JOSÉ FERREIRA ALVES **
JOÃO ARAMIS CORDEIRO ***
RITA DE CÁSSIA B. GUEDES ***

A jojoba é um arbusto, pertencente à família Buxaceae, nativa do deserto de Sonora, o qual cobre parte da Califórnia. Arizona e México. Naquele deserto. a planta cresce entre elevações de 600 a 1.200 metros, sendo que, na Baia Califórnia e em algumas localidades do Estado de Sonora, ela corre ao nível do mar. Em área onde a precipitação pluviométrica está em torno de 400 a 500 mm anuais, há uma maior ocorrência de jojoba. Trata-se de uma planta resistente à seca e que cresce muito bem em condições de solo e umidade não favoráveis à majoria das outras culturas. (ARAGÃO, 1).

O método de propagação mais usado é o sexuada. A germinação é hipógea e a plântula pode emergir em 5 ou 6 dias. A porcentagem de germinação é em torno de 95%, quando as sementes são novas, girando em torno de 90% com sementes estocadas por 4 ou 5 anos em condições ambientais.

Ensaios de germinação com diferentes espécies têm demonstrado uma estreita correlação entre profundidade de plantio e valor da germinação. TRIPLET et alii (8) encontraram em alface que a emergência das plântulas diminuía à medida que a profundidade de plantio passava de 1,27 cm para 2,54 cm. Já HARRIER (1968), citado por OLI-VEIRA (7), verificou que sementes de leguminosas herbáceas, classificadas como grandes, eram mais capazes de emergir de maior profundidade que as sementes pequenas.

Mc GINNIES (6) evidenciou que a profundidade ótima para plantio de 3 tipos de gramíneas estava situada entre 1.3 e 2.5 cm, sendo que profundidades superiores a 2,5 cm reduziam o "stand". Entretanto, o autor acreditava que nos plantios mais profundos poderia estar o sucesso dos cultivos tardios, uma vez que a umidade aumenta com a profundidade. Trabalhando com sementes de diferentes tamanhos de 3 cultivares de soia, em diversas profundidades de plantio, HOP-PER & OVERHOLT (5) verificaram que as sementes pequenas e médias apresentavam maior velocidade de emergência. À medida que a profundidade aumentou houve redução na emergência.

Os efeitos do tamanho da semente e da profundidade de plantio sobre a emergência e o desenvolvimento do feijão-decorda, Vigna sinensis (L) Savi, cultivar Pitiúba, estudadas por FARIAS et alii (3) evidenciaram que a porcentagem de germinação diminuiu com o aumento da

^{*} Trabalho realizado em decorrencia do Convenio CNPq/EBTU-FDTU/FCPC

^{**} Professores do Centro de Ciencias Agrárias da UFC. Fortaleza, Ceará, Brasil.

^{***} Estudantes do Curso de Mestrado em Fitotecnia do Departamento de Fitotecnia do Centro de Ciencias Agrárias da UFC, Fortaleza, Ceará, Brasil

profundidade de plantio e aumentou com o tamanho da semente.

A profundidade de plantio e seus efeitos no valor da germinação são explicadas por HARTMANN & KESTER (4). Segundo os referidos autores, a temperatura é talvez o mais importante fator do meio ambiente que regula a germinação e o crescimento da plântula. Dentro de determinados limites a velocidade aumenta com o incremento de temperatura, sendo que o valor da germinação, o crescimento e a diferenciação da plântula são favorecidos pelas flutuações entre as temperaturas diurna e noturna. Por outro lado, quanto major for a profundidade do solo, maior as concentrações de CO2. Altas concentrações de CO₂ podem inibir a germinação ou favorecer a dormência das sementes.

O presente trabalho teve por objetivo estudar a influência da profundidade de plantio no valor da germinação de sementes de jojoba.

MATERIAL E MÉTODO

O ensaio foi realizado em casa de vegetação do Centro de Ciências Agrárias da Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, em sacos de polietileno de tamanho 10 x 21 cm, contendo areia grossa, solo argiloso e matéria orgânica (esterco) em iguais proporções. Conforme a análise procedida no Laboratório de Fertilidade do Centro de Ciências Agrárias, a mistura apresentava as seguintes características:

Fósforo	52,00 ppm
Potássio	33,00 ppm
Cálcio + Magnésio	4,70 me%
pH	7,60

Tomaram-se como parcela 20 sacos plásticos, contendo cada saco cerca de 2 kg da mistura previamente pasteurizada durante 15 minutos, em estufa regulada para 85 ± 1° C. Antes da semeadura, as sementes foram desinfetadas com uma solução de hipoclorito de sódio a 1%. Em cada parcela foram plantadas 20 se-

mentes de jojoba provenientes do Estado do Arizona (USA). O experimento foi irrigado com um sistema intermitente, em intervalos de 15 minutos, com um minuto de duração para cada irrigação.

No decorrer do ensaio, que durou 30 dias, a intensidade luminosa foi em média de 19.258 lux, a temperatura sofreu uma flutuação diurna de 35 a 39°C, e a noturna de 28 a 30°C, e a umidade relativa do ar variou entre 43 a 89%.

O esquema experimental obedeceu ao delineamento inteiramente casualizado com 4 tratamentos (profundidades de plantio) e 5 repetições. Os tratamentos foram: 2, 4, 6 e 8 cm. A avaliação do experimento constou da análise estatística dos dados relativos à porcentagem e velocidade de germinação de par com a comparação de médias pelo teste de Tukey, ao nível de 5% de probabilidade.

Para fins do cálculo da velocidade de germinação, procederam-se em intervalos de dois dias contagens das plântulas emergidas. Foi considerada como emergida a plântula que apresentava as duas folhas cotiledonáreas. Para exprimir a velocidade de germinação, utilizou-se a fórmula apresentada por HARTMANN & KESTER (4), dada por:

$$V.G = \frac{S(n - T)}{S_n}$$

em que ni é o número de sementes germinadas em cada um dos intervalos de tempo tomado como dois dias até o final da germinação, ti o número de dias decorridos da data da semeadura até o final de cada intervalo e S o Somatório.

RESULTADOS E DISCUSSÃO

A tabela 1 mostra que a porcentagem e a velocidade de germinação decresceram com o aumento da profundidade de plantio. Provavelmente, isto ocorreu em virtude de nas maiores profundidades existir maior concentração de CO2, que afeta tanto a porcentagem quanto a velocidade de germinação. Por outro lado. acredita-se que a redução da velocidade de germinação está associada com as flutuações das temperaturas diurnas e noturnas, que favorecem, principalmente, as sementes plantadas nas menores profundidades. Estes resultados concordam em parte com os encontrados por FA-RIAS et alii (3). HOPPER & OVER-HOLT (5) e TRIPLET et alii (8). Observa-se na Figura 1 que as sementes semeadas com 2 cm de profundidade atingiram o pico de germinação aos 18 dias. ocorrendo estabilização e término aos 21 e 22 dias, respectivamente. Na profundidade de 4 cm. nos primeiros 11 dias. quando se iniciou a contagem da germinação, a porcentagem de sementes germinadas foi muito baixa. O pico máximo ocorreu com 22 dias e o final da germinação aconteceu aos 32 dias. As sementes plantadas com 6 cm de profundidade iniciaram o processo emergência após 11 dias da semeadura e somente aos 22 dias atingiram o valor máximo, apresentando, no entanto, um menor número de sementes emergidas que nas profundidades de 2 e 4 cm. A exemplo do que ocorreu na profundidade de 2 cm, o final da germinação também foi prolongado até o 32.º dia após o plantio. O plantio efetuado na profundidade de 8 cm, apesar de ter apresentado, inicialmente, quatro sementes germinadas, finalizou por mostrar comportamento idêntico ao das sementes semeadas nas profundidades de 4 e 6 cm, quanto ao tempo decorrido para atingir o pico máximo de germinação. Observou-se, também, que o final da germinação aconteceu no 26.º dia após o plantio.

Diante do que foi revelado pelo experimento, verifica-se que nas menores profundidades as sementes apresentaram os melhores valores para a porcentagem e a velocidade de germinação, muito embora a major expressividade destas características esteia também intimamente relacionada com tamanho das sementes (FARIAS et alii 3). No entanto, como as sementes usadas no presente estudo tiveram a mesma origem e uniformidade com relação ao tamanho, acredita-se que a varável profundidade foi, provavelmente, a única responsável pela melhor performance das sementes nas menores profundidades.

CONCLUSÕES

- A profundidade de plantio influiu significativamente na germinação das sementes de jojoba e não exerceu qualquer efeito significativo na velocidade de germinação.
- 2. A porcentagem e a velocidade de germinação decresceram com o aumento da profundidade de plantio.

TABELAI

Médias referentes à porcentagem e à velocidade de germinação de sementes de jojoba, **Simmondsia** chinensis (Link.) Schneider, semeadas em diferentes profundidades. Fortaleza, Ceará, Brasil.

PROFUNDIDADE EM CM	PORCENTAGEM DE GERMINAÇÃO	VELOCIDADE DE GERMINAÇÃO (DIAS)
2	94 a	14 a
4	82 a b	18 a
6-20-00-00-00-00-00-00-00-00-00-00-00-00-	78 a b	17 a
8	76 b	19 a

^{*} Duas médias seguidas da mesma letra não diferem estatisticamente, ao nível de 5% de probabilidade, pelo teste de Tukey.

SUMMARY

Seeds of jojoba Simmondsia chinensis (Link) Schneider were planted at varying dephts of 2, 4, 6 or 8 cm to study emergence pattern. There was consistent inverse relationship between seeding depht and germination percentage. Decrease in velocity of germination was apparent, although not statistically significant, with increasing depht of planting.

BIBLIOGRAFIA CONSULTADA

- ARAGÃO, R.G.M. 1976. Growth and morphogenesis of jojoba Simmondsia chinensis (Link) Schneider Shoot tips in vitro. Dissert PhD. Univ. Arizona, Arizona
- CALTON, J.E. Jr. and E.; E. HARTING. 1971.
 Effect of seed size upon rate of germination in soybeans. Agron. J. 63: 429-430.

- FARIAS, E.; J.B. PAIVA e J.F. ALVES. 1975.
 Efeitos do tamanho da semente e da profundidade do plantio sobre a emergência e o desenvolvimento do feijão-de-corda, Vigna sinensis. (L.) Savi. Relat. Pesq. Conv. SUDENE/UFC Fortaleza 93 n
- HARTMANN, H.T. and D.E. KESTER. 1975.
 Plant Propagation Principles and Practices.
 Prentice-Hill, Englewood Clifs, New Jersey.
- HOPPER, N.W. and J.R. OVERHOLT. 1975. Effect of size and temperature on the germination and emergence of soybeans. Agron. Abstr. 93 p.
- Mc GINNIES, J.W. 1973. Effects of date and depht of planting on the establishment of Three Range Glasses. Agron. J. 65: 120-123.
- OLIVEIRA, M.A. 1972. Effects of seed size and showing rate on cowpea Vigna sinensis (L) Savi performance. Tese (M.S.), Mississipi.
- TRIPLET, B. et al. 1960. Effects of date and depht of planting on the establishment of three range glasses. Agron. J. 65: 120-123.

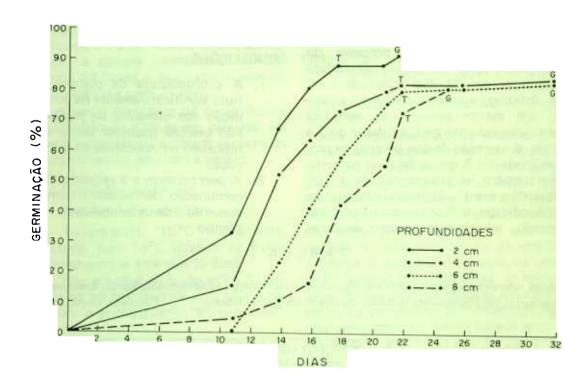


FIG. 1 – Curvas do valor da Germinação de Sementes de Jojoba, em quatro Profundidades de Plantio. Fortaleza, Ceará, Brasil.