Adaptabilidade e estabilidade de variedades e híbridos de milho no estado de Sergipe no ano agrícola de 2002¹

Adaptability and stability of maize cultivares in Sergipe state during the agricultural year of 2002

Evanildes Menezes de Souza², Hélio Wilson Lemos de Carvalho³ e Maria de Lourdes da Silva Leal³

RESUMO

A adaptabilidade e estabilidade de 23 variedades e 55 híbridos de milho foram avaliadas no ano agrícola de 2002, em quatro ambientes do estado de Sergipe, utilizando-se o método de Lin & Binns (1988), modificado por Carneiro (1998). As variedades Sertanejo, Asa Branca, SHS 600 EX 200, São Francisco e AL Bandeirante apresentaram boa adaptabilidade e estabilidade de produção e podem ser recomendadas nos sistemas de produção prevalecentes na região. As variedades São Francisco, Sertanejo e Asa Branca destacaram-se nos ambientes favoráveis e desfavoráveis enquanto que a variedade AL Bandeirante sobressaiu-se nos ambientes favoráveis. Os híbridos BEM 1220, 97 HT 19-A, BRS 3143, Pioneer 3021, SHS 5070 e DAS 8550 apresentaram melhor performance (adaptabilidade/ estabilidade) nos diferentes ambientes. Tais materiais podem proporcionar melhorias substanciais nos sistemas de produção, principalmente, naqueles sistemas onde se praticam tecnologias modernas de produção.

Termos para indexação: Zea mays, cultivares, previsibilidade, interação genótipos x ambientes.

ABSTRACT

During the agricultural year of 2002, six field experiments were carried out in four environments of Sergipe State in order to evaluate the adaptability and the stability of 23 varieties and 55 hybrids of corn by the method proposed by Lin & Binns (1988), and modified by Carneiro (1998). The varieties Sertanejo, Asa Branca and SHS 600 EX 200, have good adaptability and stability and are in the crop systems recommended for small farmers crop systems. The maize hybrids BEM 1220, 97 HT 19-A, SHS 5070, P 3021, DAS 8550 and Agromen 3150 have good adaptability and stability for favorable environments and are recommended for farmers with capability to use modern technologies.

Index terms: Zea mays, cultivar, genotype x environment interaction.

¹ Recebido para publicação em 16/05/2003. Aprovado em 04/11/2003.

² Estagiaria da Embrapa Tabuleiros Costeiros, Av. Beira-Mar, 3250, CP 44, CEP 49001-970, Aracaju, SE. E-mail: eva@cpatc.embrapa.br

³ Pesquisadores da Embrapa Tabuleiros Costeiros.

Introdução

A utilização de variedades de milho melhor adaptadas e portadoras de atributos agronômicos desejáveis, tais como, uniformidade para a altura de planta e inserção da primeira espiga, precocidade e bom empalhamento, devem ser aconselhadas para pequenos e médios produtores rurais, os quais, em geral, têm limitação de capital que os impede de investir em tecnologias de produção, além de possibilitar a reutilização de sementes em plantios posteriores. Trabalhos de competição de cultivares realizados no Nordeste brasileiro têm apontado materiais para os diferentes ecossistemas dessa região (Cardoso et al., 2000a e 2000b e Carvalho et al., 2001 e 2002). Nesses trabalhos ficaram demonstradas as potencialidades das variedades Assum Preto e Cruzeta para as áreas do semi-árido, por associarem boa adaptação à superprecocidade.

No estado de Sergipe, a demanda por híbridos de milho vem aumentando gradativamente em algumas áreas do Agreste Sergipano e dos Tabuleiros Costeiros, nas quais há aptidão edafoclimática para a espécie, onde tem sido significativo o uso de tecnologias modernas de produção. Nessas áreas tem se constatado a melhor adaptação dos híbridos em relação às variedades (Carvalho et al. 2000, 2001 e 2002).

A interação genótipos x ambientes assume papel fundamental quando um grupo de cultivares é submetido a diversas variações ambientais, devendo-se estimá-la e avaliar sua importância na recomendação de cultivares (Ramalho et al., 1993). Esses autores admitem que quanto maior o número de ambientes e genótipos, a presença da interação quase sempre revela a existência de cultivares com adaptação a ambientes específicos e cultivares com adaptação mais ampla, porém nem sempre com alto potencial para a produtividade em ambientes inferiores, o que impede uma recomendação segura para uma ampla região. Ramalho et al. (1993) enfatizam que para assegurar uma recomendação mais eficiente é necessário atenuar o efeito da interação genótipos x ambientes, recomendando materiais com melhor estabilidade fenotípica.

O trabalho teve por objetivo avaliar a adaptabilidade e a estabilidade de produção de variedades e híbridos de milho, disponíveis para comercialização no mercado brasileiro, quando submetidos a diferentes condições ambientais no estado de Sergipe para fins de recomendação aos agricultores.

Material e Métodos

Foram realizadas duas redes experimentais, sendo uma composta por 42 híbridos e, a outra formada por 36 cultivares, sendo 13 híbridos e 23 variedades, no ano agrícola de 2002, em três ambientes no município de Nossa Senhora das Dores, localizada nos Tabuleiros Costeiros do estado de Sergipe e, um ambiente no município de Simão Dias, no Agreste sergipano. Segundo Silva et al. (1993) a região Agreste apresenta clima ameno, com precipitacão média oscilando de 500 mm a 800 mm. Os Tabuleiros Costeiros, segundo esses autores, acompanham todo o litoral do Nordeste brasileiro, e apresentam superfícies planas a ligeiramente onduladas. A precipitação média anual varia de 500 mm a 1500 mm. As temperaturas médias anuais oscilam em torno de 26°C.

Em ambas as redes experimentais utilizou-se o delineamento experimental em blocos casualizados, com três repetições. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, a espaços de 0,80 m e 0,40 m entre covas, dentro das fileiras. Foram colocadas três sementes por cova, deixando-se, após o desbaste, duas plantas por cova. As adubações dos ensaios obedeceram aos resultados das análises de solo de cada área experimental.

Os dados de peso de grãos, após ajustados para o nível de 15% de umidade, foram submetidos a análise de variância, obedecendo ao modelo em blocos ao acaso, e a uma análise de variância conjunta, obedecendo ao critério de homogeneidade dos quadrados médios residuais (Pimentel-Gomes, 1990), de acordo com o seguinte modelo:

1990), de acordo com o seguinte modelo:
$$Y_{ijk} = \mu + C_i + A_j + CA_{ij} + B/A_{k(j)} + \epsilon_{ijk},$$
 em que :

 μ : média geral; $C_{_{i}}$: efeito da cultivar i; $A_{_{j}}$: efeitos do ambientes i; $CA_{_{ij}}$: efeito da interação da cultivar i com o local j; $B/A_{_{k(j)}}$: efeito do bloco k dentro do ambiente j; $\epsilon_{_{ijk}}$: erro aleatório.

Os parâmetros de adaptabilidade e estabilidade foram estimados utilizando-se a metodologia proposta por Lin & Binns (1988), modificada por Carneiro (1998). Lin & Binns (1988) definiram como estimador do desempenho genotípico (P_i), o quadrado médio da distância entre a média da cultivar e a resposta máxima para todos os ambientes, conforme abaixo:

$$P_{i} = \frac{\sum_{j=1}^{n} (Y_{ij} - M_{j})^{2}}{2a}$$

em que: P_i é a estimativa do parâmetro de estabilidade da cultivar i; Y_{ij} é a produtividade da i-ésima cultivar no j-ésimo ambiente; M_j : é a resposta máxima observada entre todas as cultivares no ambiente j; "a" é o número de ambientes.

Visando efetuar a recomendação de cultivares para os ambientes favoráveis e desfavoráveis, fêz-se a decomposição do estimador (P_i) nas partes devidas a ambientes favoráveis (P_{ii}) , conforme Carneiro (1998).

Para os ambientes favoráveis, com índices maiores ou iguais a zero, estimou-se:

$$P_{if} = \frac{\sum_{j=1}^{n} (Y_{ij} - M_j)^2}{2f}$$

em que: f é o número de ambientes favoráveis e Y $_{_{ij}}$ e $M_{,,}$ como definidos anteriormente.

Para os ambientes desfavoráveis, cujos índices são negativos, utilizou-se a fórmula anterior, sendo "d" o número de ambientes desfavoráveis, conforme a seguir.

$$P_{id} = \frac{\sum_{j=1}^{n} (Y_{ij} - M_{j})^{2}}{2d}$$

Resultados e Discussão

As análises de variância por ambiente nos ensaios de variedades e híbridos mostraram efeitos significativos entre as cultivares (P<0,01), o que evidencia diferenças entre esses materiais em todos os ambientes (Tabela 1). As produtividades médias de grãos nesses ambientes oscilaram de 3.554 kg/ha, no ambiente Dores 1 a 5.821 kg/ha, em Dores 2, o que mostra uma ampla faixa de variação nas condições ambientais em que foram realizados os ensaios. Os ambientes Dores 1 e Dores 2 expressaram melhores potencialidades para o desenvolvimento do milho. Os coeficientes de variação encontrados variaram de 10,8% a 12,2%, o que confere boa precisão aos ensaios, conforme critérios adotados por Scapim et al. (1995).

Nos ensaios de híbridos (Tabela 2), a média geral registrada foi de $6.118~{\rm kg/ha}$, com variação de $4.877~{\rm kg/ha}$ em Dores 1, a $7.381~{\rm kg/ha}$, em Dores 3. A nível de ambientes, os híbridos comportaram-se de forma diferente (P<0,01)e, os coeficientes de variação obtidos oscilaram de 9.0% a 15,4%, o que confere, à semelhança dos ensaios anteriores, boa precisão experimental.

Tabela 1 - Médias e resumo da análise de variância para a produtividade de grãos das variedades e híbridos instalados nos municípios de Dores 1, Dores 2, Dores 3 e Simão Dias. Sergipe, 2002.

Cultivares	Dores 1	Dores 2	Dores 3	Simão Dias
BEM 12201	4622	7704	7298	6413
97 HT 19-A ¹	3922	6464	7673	6794
Sertanejo ³	4024	6867	7480	6381
BRS 31431	3941	6948	8096	5440
BEM 11701	4747	6558	7930	5019
Asa Branca ³	4489	6736	6849	5802
SHS 600 EX 200 ³	3901	6494	6773	6144
BRS 2110 ²	4368	6334	6385	6079
AL Bandeirante ²	4174	7316	7206	4388
97 HT 14-A ¹	3903	7833	6566	4580
São Francisco ³	3833	6317	6407	6240
AL 34 ³	3213	6518	5636	5804
BRS 3150 ²	3529	6450	6808	5041
Bozm Blanco ³	3143	6806	5797	4827
Bozm Amarillo ³	3847	5934	5387	5261
BR 205 ²	3040	5901	6080	5342
BRS 22231	3842	5842	5449	4923
BRS 31011	3114	5718	5791	5271
AL 30 ³	3792	6278	5314	4284
CMS 353	3499	5493	5281	5013
Sintético Dentado ³	3142	5925	5608	4611
CMS 593	3349	4763	6039	5052
BR 106 ³	2824	4905	6903	4373
Sintético Duro ³	3120	6089	5843	3923
Cruzeta ³	3268	5753	5444	4425
BRS 30601	2930	6054	4756	5113
AL 35 ³	3292	4614	6003	4685
Saracura ³	3538	5053	4841	4773
Assum Preto ³	3171	5147	4779	4861
AL Manduri ³	3085	4573	5121	4975
97 HT 1291	4150	4024	4535	5019
BRS 4150 ³	2962	5501	4667	4273
97 HT 98-A1	3619	4163	4369	4515
BR 473 ³	2979	4756	4373	4265
São Vicente ³	2852	4158	3194	5231
CMS 47 ³	2701	3766	2636	2983
Média	3554	5821	5787	5059
C. V. (%)	12,2	10,8	10,4	13,3
F(C)	4,7**	8,1**	12,6**	4,1**
D. M. S. (5%)	1422	2055	1970	2201

^{**}Significativo a 1% de probabilidade, pelo teste F.

1Híbrido triplo, ²Híbrido duplo e ³Variedade.

A análise de variância conjunta dos ensaios contendo variedades e híbridos, e dos ensaios compostos por híbridos, evidenciou efeitos significativos (P<0,01) para ambientes, cultivares e interação cultivares x ambientes (Tabela 3). Constatada a presença da interação cultivares x ambientes, foram estimados os parâmetros de adaptabilidade e estabilidade propostos por Lin & Binns (1988), modificado por Carneiro (1998).

Tabela 2 - Médias e resumo da análise de variância para a produtividade de grãos dos ensaios de competição de híbridos instalados nos municípios de Dores 1, Dores 2, Dores3 e Simão Dias. Sergipe, 2002.

Híbridos	Dores 1	Dores 2	Dores 3	Simão Dias
SHS 5070 ²	6109	9648	8111	6963
Pioneer 3021 ³	5999	8773	8558	6109
DAS 8550 ²	5857	8084	8660	6632
SHS 5050 ²	6424	6787	9071	6156
Agromen 3150 ²	4752	8383	8854	6113
Agromen 30501	5394	6627	9408	6395
Pioneer 30 F 44 ¹	5338	6526	7708	7791
Pioneer 30 K 751	5535	6702	8545	6471
DAS 95601	6365	7010	8295	5325
Colorado 32 ²	6583	7214	8544	4635
DAS 7661	5823	8189	7770	5072
Pioneer 30 F 331	5251	7821	8037	5422
Agromen 3180 ²	5157	6970	8327	5901
DAS 84601	5766	7351	8322	4695
Agromen 1533 ¹	5977	6901	7725	5549
Agromen 2012 ³	5327	6623	7831	6130
SHS 4040 ³	5361	6638	7505	6278
A 2345 ¹	4093	7327	8204	6091
DAS 6571	4728	8301	7318	5308
Agromen 3100 ³	5016	7387	7531	5286
AS 32 ²	4276	8604	7405	4887
AS 3466 ²	4697	6834	7713	5172
DAS 84801	5186	6376	7459	5383
DAS 8501 ¹	5100	6655	7765	4807
A 2555 ¹	3966	6291	6920	6403
Agromen 2003 ³	4985	6073	6989	5484
Pioneer 30 F 88 ¹	4767	5128	8544	4953
Agromen 3060 ²	4157	6818	6954	5075
Pioneer 30 F 80 ¹	3968	5810	6797	5882
A 2005 ¹	4304	6911	6390	4497
A 3575 ²	4356	6639	6551	4518
A 4646 ³	3558	6777	7134	4208
BR 3123 ²	3606	6298	7043	4603
A 3663 ²	3958	5991	6975	4583
A 2560 ¹	3898	5802	6957	4825
AS 1544 ¹	4506	4694	5426	6333
AS 3477 ¹	4122	5425	5482	5530
BR 201 ³	3944	4725	6629	5166
BR 206 ³	4006	5605	3167	4581
AS 3601 ²	3674	6972	4203	5118
AS 523 ¹	4244	4793	4985	5203
A 2288 ¹	4338	4464	5216	4474
Média	4877	6737	7381	5476
C. V. (%)	11,6	15,4	9	44,2
F(C)	7,0**	3,7**	9,0**	5,0*
D. M. S. (5%)	1884	3447	2206	2038

^{**}Significativo a 1% de probabilidade, pelo teste F.

A produtividade média de grãos dos ensaios envolvendo variedades e híbridos variou de 3.022 kg/ha a 6.509 kg/ha, com média geral de 5.055 kg/ha (Tabela 4), o que expressa o potencial para a produtividade desses materiais na região. Os híbridos, com rendimento médio de 5.381 kg/ha, superaram em 10% o rendimento médio das varie-

dades (4.871 kg/ha). Resultados semelhantes têm sido constatados em outros trabalhos na região (Cardoso et al., 2000c e Carvalho et al., 2001 e 2002).

A Tabela 4 contém as estimativas da produtividade de grãos, P_igeral, P_i favorável e P_i desfavorável das variedades e híbridos avaliados. Na metodologia utilizada, a performance de cada material é estimada por um único parâmetro (P_i) geral obtido pelas diferenças do rendimento de grãos entre a melhor variedade ou híbridos de cada local e o rendimento dos outros materiais em avaliação, de modo que quanto menor o seu valor, maior será a adaptabilidade e estabilidade de comportamento da variedade ou híbrido em questão. Desta forma, os híbridos BEM 1220, 97 HT 19- A e BRS 3143 e as variedades Sertanejo, Asa Branca e SHS 600 EX 200 mostraram maior adaptabilidade e estabilidade de comportamento.

Percebe-se também que houve uma maior correspondência entre a classificação com base na produtividade média e P_i geral (Tabela 5) comparativamente às outras recomendações. Fato semelhante foi observado por Arias (1996), Carneiro (1998). Observa-se, contudo, que o posicionamento relativo com base no rendimento médio não é eficiente para cultivares que apresentam adaptação específica a determinados tipos de ambientes, a exemplo do híbrido 97 HT 19-A que ocupou a segunda posição com base na média, sendo o sexto colocado nos ambientes favoráveis, e o terceiro para os ambientes desfavoráveis. Variações semelhantes foram observadas para os híbridos BRS 3143, BEM 1170, dentre outros.

A decomposição do estimador do parâmetro proposto por Lin & Binns (1988), modificado por Carneiro (1998), possibilitou a identificação dos materiais para os diferentes tipos de ambientes. Assim, nota-se na Tabela 5, que para os ambientes favoráveis destacaram-se os híbridos BEM 1220, BRS 3143, BEM 1170 e 97 HT 19-A e as variedades AL Bandeirante e Sertanejo. Para as condições desfavoráveis sobressaíram os híbridos BEM 1220, BRS 2110, 97 HT 19-A e as variedades, Sertanejo, Asa Branca e SHS 600 EX 200.

No ensaio de híbridos seus rendimentos variaram de 4.625 kg/ha a 7.708 kg/ha, com média geral de 6.118 kg/ha, o que expressa boa adaptação desses materiais na região, merecendo destaque aqueles que expressaram rendimentos superiores à média geral, principalmente, os SHS 5070, Pioneer 3021, DAS 8550, SHS 5050 e Agromen 3150, ape-

¹ Híbrido simples, ² Híbrido triplo e ³ Híbrido duplo.

Tabela 3 - Análise de variância conjunta para a produtividade de grãos dos ensaios de variedades e híbridos e exclusivamente híbridos em quatro ambientes no Estado de Sergipe, no ano agrícola de 2002.

	Variedade/híbridos		Híbridos	
Fonte de variação	Graus de liberdade	Quadrado médio	Graus de liberdade	Quadrado médio
Ambientes (A)	3	121.525.505,2**	3	165.085.116,8**
Tratamentos (T)	35	6.893.853,2**	41	7.056.425,5**
Interação (AxT)	105	1.202.097,8**	123	1.675.779,0**
Resíduo	280	349.436,6	328	555.267
Média	-	5.055	-	6.118
C.V. (%)	-	11,7	-	12,2

 $^{^{\}star\star}$ Significativo a 1% de probabilidade pelo teste F.

Tabela 4 - Estimativas das médias de produtividade de grãos (kg/ha), Pi geral, Pi favorável e Pi desfavorável, pelo modelo de Lin & Binns (1988), modificado por Carneiro (1998), para os híbridos e variedades de milho avaliados no ano agrícola de 2002, no estado de Sergipe.

Variedades/híbridos	Produtividade média (kg/ha)	P _i geral	P _i favorável	P _i desfavorável
BEM 1220 ¹	6509	101779	163361	40196
97 HT 19-A ¹	6216	339461	513272	165649
Sertanejo ³	6188	247526	328153	166898
BRS 31431	6106	408272	195806	620738
BEM 1170 ¹	6014	600476	413295	787656
Asa Branca ³	5969	476131	689604	262657
SHS 600 EX 2003	5828	585183	885812	284554
BRS 2110 ²	5792	728673	1293630	163716
AL Bandeirante ²	5771	897069	264847	1529291
97 HT 14-A ¹	5720	994379	585225	1403533
São Francisco ³	5699	786661	1287744	285578
AL 34 ³	5293	1389260	1945206	833314
BRS 3150 ²	5207	1016021	892908	1139133
Bozm Blanco ³	5143	1597241	1584006	1604476
Bozm Amarillo ³	5107	1763121	2736220	790022
BR 205 ²	5091	1602379	1949220	1155538
BRS 22231	5014	1911294	2742672	1079916
BRS 31011	4973	1846558	2446562	1246554
AL 30 ³	4917	2171209	2539387	1803031
CMS 353	4821	2266161	3349956	1182366
Sintético Dentado ³	4821	2146515	2457652	1835378
CMS 593	4801	2330640	3414037	1247242
BR 106 ³	4751	2444450	2499108	2389792
Sintético Duro ³	4743	2359129	1995816	2722442
Cruzeta ³	4722	2394888	2839876	1949200
BRS 30601	4713	2555961	3580110	1531812
AL 35 ³	4649	2663439	3685652	1641226
Saracura ³	4551	2983693	4580856	1386530
Assum Preto ³	4489	3054669	4554271	1555066
AL Manduri ³	4438	3193654	4869556	1517751
97 HT 129 ¹	4432	3837029	6797300	876758
BRS 4150 ³	4351	3342241	4299066	2385416
97 HT 98-A ¹	4166	4228207	6839857	1616556
BR 473 ³	4093	4106290	5832164	2380416
São Vicente ³	3859	5446153	9383807	1508498
CMS 47 ³	3022	8132741	11588022	4677459

¹ Híbrido triplo, ² Híbrido duplo e ³ Variedades.

sar de não diferirem, estatisticamente, de muitos outros (Tabela 6). Esses híbridos mostraram também menores valores de P_i geral, o que confere a eles melhores adaptabilidade e estabilidade de produção nos ambientes considerados.

Nos ensaios de híbridos, a semelhança do verificado nos ensaios de variedades e híbridos, percebe-se a facilidade de recomendação dos híbridos baseada na identificação daqueles melhores para cada tipo de ambiente, bem como a forte concordância entre a classificação com base na média de produtividade e no P_i geral (Tabela 6). Percebe-se

também que o posicionamento relativo com base na produtividade média não é eficiente para híbridos que expressaram adaptação específica a determinados tipos de ambientes, a exemplo do ocorrido com resultados obtidos nos ensaios de variedades e híbridos (Tabela 5) e dos resultados assinalados por Carneiro (1998). Na Tabela 7 os híbridos Pioneer 3021, SHS 5070, Agromen 3150 e DAS 8550 tiveram melhor performance nos ambientes favoráveis; nos ambientes desfavoráveis, mereceram destaque os híbridos SHS 5070, Pioneer 30 F44, DAS 8550 e SHS 5050.

Tabela 5 - Posição relativa dos híbridos e variedades de milho avaliados quanto a produtividade média de grãos, P_igeral, P_ifavorável e P_idesfavorável conforme modelo de Lin & Binns (1988). Sergipe, 2002.

Produtividade média	Produção relativa dos híbridos e variedades quanto a			
(kg/ha)	P _i geral	P _i favorável	P _i desfavorável	
BEM 1220 ¹	BEM 12201	BEM 1220 ¹	BEM 1220 ¹	
97 HT 19-A ¹	Sertanejo ³	BRS 31431	BRS 2110 ²	
Sertanejo ³	97 HT 19-A ¹	AL Bandeirante ²	97 HT 19-A ¹	
BRS 31431	BRS 31431	Sertanejo ³	Sertanejo ³	
BEM 1170 ¹	Asa Branca ³	BEM 1170 ¹	Asa Branca ³	
Asa Branca ³	SHS 600 EX 2003	97 HT 19-A ¹	SHS 600 EX 200 ³	
SHS 600 EX 200 ³	BEM 11701	97 HT 14-A ¹	São Francisco ³	
BRS 2110 ²	BRS 2110 ²	Asa Branca ³	BRS 31431	
AL Bandeirante ²	São Francisco ³	SHS 600 EX 200 ³	BEM 1170^{1}	
97 HT 14-A ¹	AL Bandeirante ²	BRS 3150 ²	Bozm Amarillo ³	
São Francisco ³	97 HT 14-A ¹	São Francisco ³	AL 34 ³	
AL 34 ³	BRS 3150 ²	BRS 2110 ²	97 HT 129 ¹	
BRS 3150 ²	$AL 34^3$	Bozm Blanco ³	BRS 22231	
Bozm Blanco ³	Bozm Blanco ³	AL 34 ³	BRS 3150 ²	
Bozm Amarillo ³	BR 205 ²	BR 205 ²	CMS 35 ³	
BR 205 ²	Bozm Amarillo ³	Sintético Duro ³	BRS 31011	
BRS 22231	BRS 31011	BRS 31011	CMS 59 ³	
BRS 3101 ¹	BRS 22231	Sintético Dentado ³	BR 205 ²	
AL 30 ³	Sintético Dentado ³	BR 106 ³	Saracura ³	
CMS 35 ³	$AL 30^3$	$AL~30^3$	97 HT 14-A ¹	
Sintético Dentado ³	CMS 35 ³	Bozm Amarillo ³	São Vicente ³	
CMS 59 ³	CMS 59 ³	BRS 22231	AL Manduri ³	
BR 106 ³	Sintético Duro ³	Cruzeta ³	AL Bandeirante ²	
Sintético Duro ³	Cruzeta ³	CMS 35 ³	BRS 30601	
Cruzeta ³	BR 106 ³	CMS 593	Assum Preto ³	
BRS 30601	BRS 30601	BRS 30601	Bozm Blanco ³	
AL 35 ³	$AL 35^3$	AL 35 ³	97 HT 98-A ¹	
Saracura ³	Saracura ³	BRS 4150 ³	AL 35 ³	
Assum Preto ³	Assum Preto ³	Assum Preto ³	$AL~30^3$	
AL Manduri ³	AL Manduri ³	Saracura ³	Sintético Dentado ³	
97 HT 129 ¹	BRS 4150 ³	AL Manduri ³	Cruzeta ³	
BRS 4150 ³	97 HT 129 ¹	BR 473 ³	BR 473 ³	
97 HT 98-A ¹	BR 473 ³	97 HT 129 ¹	BRS 4150 ³	
BR 473 ³	97 HT 98-A ¹	97 HT 98-A ¹	BR 106 ³	
São Vicente ³	São Vicente ³	São Vicente ³	Sintético Duro ³	
CMS 47 ³	CMS 47 ³	CMS 47 ³	CMS 47 ³	

¹ Híbrido triplo, ² Híbrido duplo e ³ Variedades.

Tabela 6 - Estimativas das médias de produtividades de grãos, P_igeral, P_i favorável e P_i desfavorável, pelo método de Lin & Binns (1988), modificado por Carneiro (1998), para os híbridos de milho avaliados no ano agrícola de 2002, no estado de Sergipe.

Híbridos	Produtividade média (kg/ha)	P _i geral	P _i favorável	P _i desfavorável
SHS 5070 ²	7708	324058	420552	227656
Pioneer 3021 ³	7360	582288	372031	792545
DAS 8550 ²	7308	609494	751400	467589
SHS 5050 ²	7210	1374647	2074722	674626
Agromen 3150 ²	7206	1009423	476785	1542061
Agromen 3050 ¹	6956	1561122	2281610	841634
Pioneer 30 F 44 ¹	6841	1773363	3159221	387506
Pioneer 30 K 75 ¹	6813	1530048	2355921	710176
DAS 9560 ¹	6749	1790811	2049453	1532170
Colorado 32 ²	6744	2078898	1667713	2490084
DAS 7661	6714	1597785	1202930	1992640
Pioneer 30 F 33 ¹	6632	1575494	1304392	1846596
Agromen 3180 ²	6588	1743227	2085061	1401394
DAS 8460 ¹	6534	2088538	1613901	2563176
Agromen 15331	6526	1979425	2594624	1364225
Agromen 2012 ³	6478	1972286	2909388	1035184
SHS 4040 ³	6446	2057995	3170377	945613
A 2345 ¹	6429	1990844	1709164	2272525
DAS 6571	6414	1973602	1545627	2401578
Agromen 3100 ³	6305	2170720	2158812	2182628
AS 32 ²	6293	2357176	1275486	3438866
AS 3466 ²	6104	2650972	2697905	2604039
DAS 84801	6101	2781832	3626146	1937518
DAS 85011	6082	2845130	2914374	2775886
A 2555 ¹	5892	3279353	4364898	2193808
Agromen 2003 ³	5883	3313504	4658046	1968963
Pioneer 30 F 881	5848	4066124	5294224	2838025
Agromen 3060 ²	5751	3411643	3507754	3315533
Pioneer 30 F 80 ¹	5614	40033758	5386891	2620626
A 2005 ¹	5525	4080471	4149873	4011069
A 3575 ²	5516	4111073	4304132	3918014
A 4646 ³	5419	4425279	3353429	5497128
BR 3123 ²	5388	4485229	4213990	4756468
A 3663 ²	5377	4593378	4823284	4295472
A 2560 ¹	5371	4600682	5199779	4001595
AS 1544 ¹	5240	5854760	10099610	1609923
AS 34771	5140	5551980	8311801	2792160
BR 201 ³	5116	5726714	7989692	3463736
BR 206 ³	5082	9030119	13823982	4236257
AS 3601 ²	4990	6232526	8563250	390802
AS 5231	4806	6912827	10783488	3042166
A 22881	4625	7561154	11111680	4010628

¹ Híbrido simples, ² Híbrido triplo e ³ Híbrido duplo.

Tabela 7 - Posição relativa dos híbridos de milho avaliados quanto a produtividade média (kg/ha), P_iigual, P_ifavorável e P_idesfavorável conforme modelo de Lin & Binns (1988). Sergipe, 2002.

Produtividade média	Produção relativa dos híbridos e variedades quanto a				
(kg/ha)	P _i geral	P _i favorável	P _i desfavorável		
SHS 5070 ²	SHS 5070 ²	Pioneer 3021 ³	SHS 5070 ²		
Pioneer 3021 ³	Pioneer 3021 ³	SHS 5070 ²	Pioneer 30 F 44 ¹		
DAS 8550 ²	DAS 8550 ²	Agromen 3150 ²	DAS 8550 ²		
SHS 5050 ²	Agromen 3150 ²	DAS 8550 ²	SHS 5050 ²		
Agromen 3150 ²	SHS 5050 ²	DAS 7661	Pioneer 30 K 75 ¹		
Agromen 30501	Pioneer 30 K 75 ¹	AS 32 ²	Pioneer 3021 ³		
Pioneer 30 F 44 ¹	Agromen 3050¹	Pioneer 30 F 33 ¹	Agromen 3050 ¹		
Pioneer 30 K 75 ¹	Pioneer 30 F 33 ¹	DAS 6571	SHS 4040 ³		
DAS 9560 ¹	DAS 766 ¹	DAS 8460 ¹	Agromen 2012 ³		
Colorado 32 ²	Agromen 3180 ²	Colorado 32 ²	Agromen 1533¹		
DAS 7661	Pioneer 30 F 44¹	A 2345 ¹	Agromen 3180^2		
Pioneer 30 F 331	DAS 9560 ¹	DAS 9560 ¹	DAS 9560 ¹		
Agromen 3180 ²	Agromen 2012 ³	SHS 5050 ²	Agromen 3150 ²		
DAS 8460 ¹	DAS 657 ¹	Agromen 3180 ²	AS 1544 ¹		
Agromen 15331	Agromen 1533¹	Agromen 3100 ³	Pioneer 30 F 33 ¹		
Agromen 2012 ³	A 2345 ¹	Agromen 3050¹	DAS 8480 ¹		
SHS 4040 ³	SHS 4040 ³	Pioneer 30 K 75 ¹	Agromen 2003 ³		
A 2345 ¹	Colorado 32 ²	Agromen 1533¹	DAS 766 ¹		
DAS 657 ¹	DAS 8460 ¹	AS 3466 ²	Agromen 3100 ³		
Agromen 3100 ³	Agromen 3100 ³	Agromen 2012 ³	A 2555 ¹		
AS 32 ²	AS 32 ²	DAS 8501 ¹	A 2345 ¹		
AS 3466 ²	AS 3466 ²	Pioneer 30 F 44 ¹	DAS 6571		
DAS 8480 ¹	DAS 8480 ¹	SHS 4040 ³	Colorado 32 ²		
DAS 8501 ¹	DAS 8501 ¹	A 4646 ³	DAS 8460 ¹		
A 2555 ¹	A 2555 ¹	Agromen 3060 ²	AS 3466 ²		
Agromen 2003 ³	Agromen 2003 ³	DAS 8480 ¹	Pioneer 30 F 80 ¹		
Pioneer 30 F 88 ¹	Agromen 3060 ²	A 2005 ¹	DAS 8501 ¹		
Agromen 3060 ²	Pioneer 30 F 80 ¹	BR 3123 ²	AS 3477 ¹		
Pioneer 30 F 80 ¹	Pioneer 30 F 88 ¹	A 3575 ²	Pioneer 30 F 88 ¹		
A 2005 ¹	A 2005 ¹	A 2555 ¹	AS 523 ¹		
A 3575 ²	A 3575 ²	Agromen 2003 ³	Agromen 3060 ²		
A 4646 ³	A 4646 ³	A 3663 ²	AS 32 ²		
BR 3123 ²	BR 3123 ²	A 2560 ¹	BR 201 ³		
A 3663 ²	A 3663 ²	Pioneer 30 F 88 ¹	AS 3601 ²		
A 2560 ¹	A 2560¹	Pioneer 30 F 80 ¹	A 3575 ²		
AS 1544 ¹	AS 3477 ¹	BR 201 ³	A 2560 ¹		
AS 3477 ¹	BR 201 ³	AS 3477 ¹	A 2288 ¹		
BR 201 ³	AS 1544 ¹	AS 3601 ²	A 2005 ¹		
BR 206 ³	AS 3601 ²	AS 1544 ¹	BR 206 ³		
AS 3601 ²	AS 523 ¹	AS 523 ¹	A 3663 ²		
AS 523 ¹	A 2288 ¹	A 2288 ¹	BR 3123 ²		
A 2288 ¹	BR 206 ³	BR 206 ³	A 4646 ³		
. 1 44 00	DIX 200	DI 1 200	11 TUTU		

¹ Híbrido simples, ² Híbrido triplo e ³ Híbrido duplo.

Conclusões

- O posicionamento relativo com base no rendimento médio não é eficiente para cultivares que apresentam adaptação específica a determinados tipos de ambientes.
- 2. Os híbridos BEM 1220, SHS 5070, Pionner 3021 e DAS 8550 apresentam melhor performance em ambientes favoráveis e desfavoráveis.
- As variedades Sertanejo, Asa Branca, SHS 600, EX 200 e São Francisco expressam bom comportamento nos diferentes tipos de ambientes, sendo de relevante importância nos diferentes sistema de produção.

Referências Bibliográficas

ARIAS, E. R. A. Adaptabilidade e estabilidade de cultivares de milho no Estado do Mato Grosso do Sul e avanço genético obtido no período de 1986/87 a 1993/94. 1996. 118 f. Tese (Doutorado em Genética e Melhoramento de Plantas). Universidade Federal de Lavras.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; LEAL, M. de L da S.; SANTOS, M. X. dos. Estabilidade de cultivares de milho no Estado do Piauí. **Revista Científica Rural**, Bagé, v.5, n.1, p.62-67, 2000.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; LEAL, M. de L da S.; SANTOS, M. X. dos. Comportamento, adaptabilidade e estabilidade de híbridos de milho no Estado do Piauí no ano agrícola de 1998. **Revista Científica Rural**, Bagé, v.5, n.1, p.146-153, 2000.

CARDOSO, M. J.; CARVALHO, H. W. L. de.; LEAL, M. de L da S.; SANTOS, M. X. dos. Estabilidade de variedades e híbridos de milho no Estado do Piauí no ano agrícola de 1998/1999. **Agrotrópica**, Itabuna, v.12, n.3, p.151-162, 2000.

CARNEIRO, P. C. S. Novas metodologias de análise de adaptabilidade e estabilidade de comportamento. 1998. 168 f. Tese (Doutorado em Genética e Melhroamento de Plantas). Universidade Federal de Lavras, Lavras.

CARVALHO, H. W. L. de.; LEAL, M. de L da S.;

CARDOSO, M. J.; SANTOS, M. X. dos; CARVA-LHO, B. C. L. de.; TABOSA, J. N.; LIRA, M. A.; ALBUQUERQUE, M. M. de. Adaptabilidade e estabilidade de cultivares e híbridos de milho no Nordeste brasileiro no ano agrícola de 1998. **Pesquisa Agropecuária Brasileira**, Brasília, v.36, n.4, p.637-644, 2001.

CARVALHO, H. W. L. de.; LEAL, M. de L da S.; SANTOS, M. X. dos; MONTEIRO, A. A. T.; CARDOSO, M. J.; CARVALHO, B. C. L. de. Estabilidade de cultivares de milho em três ecossistemas do Nordeste brasileiro. **Pesquisa Agropecuária Brasileira**, Brasília, v.35, n.9, p.1773-1781, 2000.

CARVALHO, H. W. L. de.; LEAL, M. de L da S.; CARDOSO, M. J.; SANTOS, M. X. dos; TABOSA. J. N.; SANTOS, D. M. dos; LIRA, M. A.. Adaptabilidade e estabilidade de híbridos de milho em diferentes condições ambientais do Nordeste brasileiro. **Revista Brasileira de Milho e Sorgo**, Sete Lagoas, v.1, n.2, p.75-82, 2002.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. **Canadian Journal of Plant Science**, Ottawa, v.68, n.1, p.193-198, 1988.

PIMENTEL-GOMES, F. Curso de Estatística Experimental. 8. ed. São Paulo: Nobel, 1990. 450p.

RAMALHO, M. A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. Genética quantitativa em plantas autógamas: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p.131-169.

SCAPIM, C. A.; CARVALHO, C. G. P de.; CRUZ, C. D. Uma proposta de classificação dos coeficientes de variação para a cultura do milho. **Pesquisa Agropecuária Brasileira**, Brasília, v.30, n.5, p.683-686, 1995.

SILVA, F. B. R. de.; RICHE, G. R.; TORNGAU, J. P.; SOUSA NETO, N. C. de; BRITO, L. T. de L.; CORREIA, R. C.; CAVALCANTI, A. C.; SILVA, F. H. B. B. da.; SILVA, A. D. da.; ARAÚJO FILHO, J. C. de.; LEITE, A. P. Zoneamento ecológico do Nordeste: diagnóstico do quadro natural e agrossocioeconômico. Petrolina: Embrapa-CPATSA/ Embrapa-CNPS, 1993. v.1.