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ABSTRACT - The fl oodplain forests of the Amazon estuary have undergone constant change over recent years, where management

techniques, especially intensive management, have had an impact on the dynamics of the vegetation and land use. These changes can

be monitored using satellite data. With this in mind, the aim of this study was to evaluate the dynamics of ground vegetation on the

islands of Jarimbu, Mamangal, Itaboca, Mutirão and Buçu in the district of Igarapé-Miri, Pará, using images from the RapidEye and

Planet satellites. The unsupervised ISODATA classifi cation method was used, generating distinct classes of vegetation between each

island. To evaluate the effi  ciency of the classifi cation, an average of 200 random points were used, with another 30 points relating to

the type of usage for each class. The Kappa index and overall precision were also analysed, in addition to calculating errors of omission

and commission. Monitoring on a seven-year time scale using high-resolution satellites, a more than 50% increase in the Exposed Soil

class was seen for the islands of Jarimbu, Mutirão and Itaboca, the latter responsible for an increase of more than 50% in the Urban

Area class. On each of the fi ve islands, the Alluvial class, representing the areas of açaí groves, has emerged over the last seven years,

increasing in area at the expense of a reduction in the Arboreal class. In this respect, the confusion matrix showed a mean accuracy for

the islands of ‘very good’, with a mean overall precision of 77.74%, and a mean Kappa index of 0.73, indicating strong agreement with

the reference data and the classifi cation.
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INTRODUCTION

The region of the Amazon estuary is formed by
a tangle of islands and adjacent areas, where fl oodplain
forests occur, and which are infl uenced by the ocean, with
two daily fl ood and ebb-tide cycles (PAROLIN et al., 2004).

The Amazon Forest includes the greatest biodiversity
of fauna and fl ora on the planet (MOTAet al., 2020). Euterpe
oleracea Mart.  (the  açaí  palm)  is  spread  over  a  large
part of the Amazon basin, where consumption of
the fruit has required the areas of açaí groves to be
expanded. According to Tagore, Canto and Vasconcelos
Sobrinho (2018), changes in the natural environment
of the floodplains have motivated people who live by
the river to manage the açai groves, with the aim of
increasing production and productivity.

Recent technological advances in agriculture, as
well as the need for conservation and the effi  cient use
of natural resources, mean that the scale of ground maps
and information on land use and land cover need to be
refi ned so that these surveys can be interpreted and used
for diff erent purposes (COSTA et al., 2016). This scenario
highlights the ability of technology to contribute with
accurate information in monitoring large areas, and as the
study by Dutra, Elmiro and Garcia (2020) demonstrate,
there are many classifi cation techniques currently
available for use in remote sensing.

In this context, identifying, mapping and planning
are necessary to mitigate the impact of these areas, using
geoprocessing together with conservation policies. For
Souza et al. (2019), the advancement in classifi cation
techniques, and improvements in the spatial resolution of
sensors have been fundamental for monitoring land use
and land cover in the Amazon, corroborating Santos et al.
(2017), who included the use of Geographic Information
Systems (GIS) in geoprocessing techniques.

From a study by Ponzoni et al. (2015) on the
application of remote sensing, it is possible, through
the use of mapping, to explore different ways of
monitoring vegetation, even of estimating production.
The use of classification techniques makes it possible
to represent a real-world object, obtaining a thematic
map as a result (FLORENZANO, 2011). For this
reason, it is important to map and identify classes of
land use and land cover through the analysis of spatial
databases (ROSA; SOUZA; SÁNCHEZ, 2020).

The aim of this article was to evaluate the dynamics
of ground vegetation in fi ve islands of the district of
Igarapé-Miri, Pará (PA), using a spatial-analytical
approach employing remote sensing techniques; to
quantify the changes that occurred, by classifying the
landscape of the region during 2013 and 2019, using

high-resolution data from the Planet and RapidEye
satellites; and to apply validation techniques to the
unsupervised ISODATA classifier for the purposes of
environmental activities and planning, aiming for the
well-being of the community.

MATERIAL AND METHODS

Characterisation of the st udy area

The study area is located in the Lower Tocantins
region, in the district of Igarapé-Miri, part of the
mesoregion of north-eastern Pará. It is 78 km from the
capital of the state of Pará and has an area of 199,679 ha
(IBGE, 2019). The study was carried out on five islands
of the PAE (Agroextractivist Settlement Project) which
have the greatest occurrence of açaí (Figure 1).

The soils in the area are considered fertile, with
a silty clay loam and silty loam texture, high base
saturation (greater than 50%), containing high levels
of organic matter and significant amounts of potassium
and phosphorus (SOARES et al., 2021).

The climate in the region is humid-tropical,
corresponding to the Ami megathermal type of
the Köppen classification, with an annual rainfall
greater than 2,000 mm (ALVARES et al., 2013).
The temperature range is small, with the mean
annual temperature varying around 27 ºC. Rainfall
is abundant from January to June (Figure 2), with
more water available during the first three months
of the year and a water deficit during September and
October (FUNDAÇÃO AMAZÔNIA DE AMPARO A
ESTUDOS E PESQUISAS, 2016).

The spatial characteristics of the fi ve islands in the
study area are shown in Table 1.

Obtaining and pre-processing the digital image

The Planet and RapidEye high-resolution
sensors were used in the present study, which included
four RapidEye orbital images and eight from the Planet
sensor. The RapidEye images were dated 12 August 2013, and
were selected from the geo-catalogue of the Brazilian
Ministry of the Environment (MMA), reserved for the
Federal Rural University of the Amazon (UFRA) for use in
research. The images correspond to location code 2237925
and have a spatial resolution of fi ve metres comprising the
following spectral bands: Band 1 (440-510 nm), Band 2
(520-590 nm), Band 3 (630-685 nm), Band 4 (690-730 nm)
and Band 5 (760-850 nm). The Planet sensor images were
obtained from the State Secretariat for the Environment and
Sustainability of Pará (SEMAS) off ered to UFRA for use in
research, and dated 9 and 10 August 2019.
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Figure 2 - Rainfall pattern in the Lower Tocantins region, Igarapé-Miri, PA

Source: INMET (2022)

Figure 1 - Location of the study area, Island region of the Tocantins River – Igarapé-Miri, PA
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Table 1 - Characteristics of the islands of the Lower Tocantins River in the district of Igarape-Miri

Island
Coordinates

Altitude (m) Area (ha)
Latitude Longitude

Jarimbu 1°54'27.18"S 49°4'17.25"W 6 8,673.71
Mamangal 1°53'13.67"S 49°1'30.95"W 8 2,590.76
Itaboca 1°50'14.17"S 49°2'54.44"W 16 2,806.13
Mutirão 1°52'21.30"S 49°0'8.44"W 12 1,708.52
Buçu 1°56'3.01"S 49°1'48.35"W 7 506.57

The images have a spatial resolution of three
metres comprising the following spectral bands: Band 1
(455–515 nm), Band 2 (500–590 nm), Band 3 (590–670
nm), Band 4 (590–670 nm).

Each of the images was georeferenced and underwent
atmospheric correction. The shapefi les of the islands were
downloaded directly from the land collection of INCRA
(National Institute of Colonisation and Agrarian Reform). The
RapidEye and Planet images were then co-registered,
followed by the acquisition of control points, spatial
transformation into an adjusted image, and subsequent
classification using the ENVI software. Using this
process, each scene was represented on a standard
geographic coordinate system, allowing their spatial
correlation (TULLIO, 2018).

All pre-processing of the satellite images was
carried out using the QGis v 3.4.11 and ENVI v 5.3
software, generating cropped images showing the
boundaries of each island, followed by the mosaic.

Un supervised classifi cation

Th e unsupervised classifi cation was prepared with
the ENVI 5.3 software using the ISODATA algorithm
(Iterative Self-Organising Data Analysis Technique)
developed by Geoff rey and Hall (1965). The ISODATA
algorithm requires the operator to have no prior knowledge
of the area under study (MORARIU et al., 2018). The
minimum spectral distance formula was used for cluster
formation and grouping based on the Euclidean distance
(SWAIN; DAVIS, 1978) Equation (1):

( )å C-==
n

i xyicixycSD 21                                                                                                  (1)

where: η - number of bands; i - band number; c -
particular class; Xxyi data-file value of pixel X, y in
band i; μci Mean of the data-fi le values (digital numbers);
in i for the sample of class c; SDxyc Spectral distance of
pixels X, y, the mean value of class c.

For this classifi cation, a minimum of fi ve and a
maximum of 30 classes was adopted, with a maximum
of 15 interactions, at the end of which one combination

was generated. This procedure includes recognition of the
area by the algorithm, which associates pixels to diff erent
classes (BLASCHKE, 1954).

Post-processing the digital images

Visual  interpretation was used to analyse the
images during post-processing within each result.
This procedure consists of interpreting the image
directly on the computer screen, making use of such
basic elements as colour, texture, shape, tonality, size,
shadow, pattern, surroundings and geographic location
(BARCELLOS et al., 2005; GOMES, 2001; LOCH, 1993;
MOREIRA, 2003; TEMBA, 2000).

The image reclassification process was carried
out manually, pixel by pixel, using the ClassEdit add-on
of the ENVI software. The Flowchart (Figure 3) shows
the procedures involved, starting with the acquired
images through to the unsupervised classification and
data validation.

Eight classes were defi ned for classifi cation:
Alluvial - comprising areas with a strong presence
of açai groves and the constant presence of water;
Arboreal - areas where large and small trees are present;
Hydrography - including rivers, holes, lakes and streams;
Agriculture - areas consisting of single crops and
agroforestry systems; Lowlands - area represented by the
presence of açaí groves without the constant presence of
water; Exposed Soil - including areas such as sandbanks,
bare soil and roads; Urban Areas - consisting of houses,
villages and built-up areas, as described by Soares et al.
(2021); and Cloud - comprising areas of the image that
were unidentifi ed due to cloud cover.

Assessing the accurac y of the classifi cation

A confusion matrix was generated to verify the
accuracy of the classifi ed land-use and land-cover data
from the Planet sensor. For this purpose, an average of 200
points were randomly collected, with another 30 points
resulting from collections in each class for the fi ve islands.
Furthermore, parameters of global accuracy and the
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Figure  3 - Methodological fl owchart of the main stages of classifi cation

Kappa index were used, including errors of omission and
commission, as per the methodology used by Congalton
(1991). Whereas for the error of omission the number of
samples is not classifi ed based on the reference classes,
the error of commission refers to the number of samples
that are included in a class to which they do not actually
belong (FRANCISCO; ALMEIDA, 2012).

Starting with the Kappa analysis as a discrete
multivariate technique used in the evaluation of thematic
precision, all the elements of the confusion matrix are
used, as per Equation 2, proposed by Cohen (1960).
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where: r = number of classes; Xij = number of correctly
classifi ed elements; Xi+ = total elements classifi ed for
category i; X+i = total reference elements sampled for
category i; N = total number of samples.

To evaluate the Kappa index, the Landis and Koch
criteria (1997) were used, as detailed in Table 2.

RESULTS AND DISCUSSION

Analysing the land use and land cover maps

The classification results for the temporal
physical characteristics of 2013 and 2019 for the five
islands of Igarapé-Miri (Jarimbu, Mamangal, Itaboca,
Mutirão and Buçu), including the classes selected for
this study (Hydrography, Exposed Soil, Urban Area,
Alluvial, Lowlands, Arboreal and Agriculture) are
shown in (Figure 4).

A gradual spatial reduction in the Arboreal class
could be seen, due to the increasing dynamics of the
Alluvial class and Lowlands, in which the açai grove is
becoming predominant in the islands (Figures 4 and 5).
The identifi cation of clumps of açai groves, as well as the
seven generated classes, is a result of the high resolution of
the Planet and RapidEye images. This is corroborated by
the work of Asner, Martin and Mascaro (2017), studyingSource: Landis e Koch (1977)

Kappa value Quality of the classifi cation
< 0 Very bad
0.0 ˗ 0.2 Bad
0.2 ˗ 0.4 Reasonable
0.4 ˗ 0.6 Good
0.6 ˗ 0.8 Very good
0.8 ˗ 1.0 Excellent

Table  2 - Classification criteria based on the bands of the
Kappa index
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Fig ure 4 - Land-use classifi cation for 2013 and 2019, for the islands of Jarimbu, Mamangal, Itaboca, Mutirão and Buçu in the district
of Igarapé-Miri, PA
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Continuation fi gura 4

the precision of the Planet data used for unsupervised
classifi cation when detecting the extent of shallow coral
reefs, and which gave a mean accuracy of 92%.

The Alluvial and Lowland classes for 2013
add up to 64.49% in areas solely of açai groves.
However, in the study by Soares et al. (2021), this total
increased to 67.72%, which confirms the formation
of homogeneous clumps and management of the açai
groves, as described by Homma (2014).

The dynamics of land use and occupation
throughout 2013 and 2019 in the area under study
is  more  significant  in  some  classes,  such  as  the
expansion of areas of exposed soil, and urban, alluvial

and lowland areas (Figure 5). For Parida and Kumar
(2020), multitemporal satellite analysis together with
digital image processing are generally employed to
monitor changes in vegetation dynamics.

On  the islands of Jarimbu and Itaboca (Figure 5A
and 5C), the Exposed Soil class more than quadrupled
from 2013 to 2019, jumping from 1.82% to 7.44%,
and from 1.07% to 5.10% on the islands of Jarimbu
and Itaboca, respectively. On Mutirão Island, the area
corresponding to this class doubled in size (Figure 5D).
This can be attributed to the implementation of new
crops and the construction of houses by the community,
who cleared the areas for this purpose.
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Figure 5 - Classes of land use with their respective areas (ha) for 2013 and 2019, for the islands under study in Igarapé-Miri, Pa

When analysing the Urban Area class, it was found
that on the islands of Jarimbu, Mamangal and Itaboca, this
class doubled in area (Figure 5A, 5B and 5C), showing
how much the population is growing and requires the
construction of new homes. Diff erent results were seen
on the islands of Mutirão and Buçu, which underwent
little change during 2013 and 2019 (Figure 5D and 5E):
Mutirão Island, as it is the export route for all production
on the islands, and Buçu, which is small, with its entire
area inhabited by the local population.

The areas classifi ed as Alluvial on the fi ve
islands, and Lowlands on Itaboca and Mutirão (Figure 5),
expanded during 2013 and 2019. This shows that açaí
was cultivated on these islands. On the other hand, there
is also a reduction of the areas classifi ed as Arboreal in
four of the fi ve islands under evaluation, namely, Jarimbu,
Mamangal, Itaboca and Mutirão, with a reduction in area
of 6.6%, 5.5%, 7, 6% and 5.3%, respectively. With the
reduction in the Arboreal class, the Exposed Soil, Urban
Area, Alluvial and Lowland classes expanded.
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Analysing the precision of the classifi cation

Mapping precision was assessed by analysing the
confusion matrix for the images from 2019, and is shown
in Tables 3 to 7.

The results of this study can be considered
very good (Table 2), since the average value of the
five islands for overall precision was 77.74% and
the mean value for the Kappa index was 0.73. Such
results indicate a strong match between the reference
and classified data. Oliveira et al. (2020) found
that the RapidEye sensor, with a resolution of five

metres, provided a more accurate classification with
rich detailing, in addition to affording greater target
differentiation due to the lower spectral mixing of
nearby pixels, as seen in the study by Naesset et al.
(2016) on mapping and estimating forest areas using
RapidEye images, which significantly helped to
improve the estimates of forest areas due to their high
spatial resolution, resulting in better accuracy. In this
study, which validated the classification, the Planet
sensor with a resolution of three metres was used; this
determines far better accuracy in the results for land
use and cover.

Table 3 - Confusion matrix for 2019 for Jarimbu Island, district of Igarapé-Miri PA

Class % Hydrography Soil Urban Area Alluvial Arboreal Total
Hydrography 97.56 0 0 1.33 0 20.30
Soil 0 81.39 10.47 9.78 1.69 20.13
Urban Area 0 0 86.43 0 0 18.63
Alluvial 2.44 11.26 3.10 85.78 16.88 22.81
Arboreal 0 7.36 0 3.11 81.43 18.13
Total 100 100 100 100 100 100
Kappa Index - 0.83 Overall Precision - 86.63 %

Table 4 - Confusion matrix for 2019 for Mamangal Island, district of Igarapé-Miri PA

Class % Hydrography Soil Urban Area Alluvial Arboreal Total
Hydrography 73.18 0.91 0.35 2.69 0 13.85
Soil 0.91 71.82 27.97 1.01 2.28 19.97
Urban Area 4.55 9.09 47.20 6.06 0 14.73
Alluvial 21.36 15.91 23.43 78.79 8.68 32.37
Arboreal 0 2.27 1.05 11.45 89.04 19.08
Total 100.00 100 100 100 100 100
Kappa Index - 0.64 Overall Precision - 71.10%

Table 5 - Confusion matrix for 2019 for Itaboca Island, district of Igarapé-Miri PA

Class % Hydrography Soil Urban Area Alluvial Lowlands Arboreal Total
Hydrography 77.46 2.88 0 0 0 0 14.49
Soil 17.25 84.17 10.38 0.55 0 2.67 20.78
Urban Area 1.41 3.96 71.58 0 0 0 17.60
Alluvial 1.76 8.99 15.57 90.71 4.71 15.51 18.74
Lowlands 0 0 0 0 70.29 4.81 12.90
Arboreal 2.11 0 0.55 8.74 25.00 77.01 15.06
Total 100 100 100 100 100 100 100
Kappa Index – 0.73 Overall Precision – 77.51%
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Class % Hydrography Soil Urban Area Alluvial Arboreal Total
Hydrography 55.56 0 0 0 3.27 11.89
Soil 15.97 77.61 5.97 2 0 19.30
Urban Area 2.78 8.96 84.33 8 3.92 20.56
Alluvial 24.31 12.69 9.70 74.67 18.95 28.81
Arboreal 1.39 0.75 0 15.33 73.86 19.44
Total 100 100 100 100 100 100
Kappa Index – 0.66 Overall Precision – 73.01%

Table 7 - Confusion matrix for 2019 for Buçu Island, district of Igarapé-Miri PA

According to the confusion matrix, the Hydrography
class had the most hits in the fi ve islands (Tables 3 to 7),
particularly Jarimbu Island, which determined good
general Kappa indices of 0.83, and an overall precision
of 86.63%, i.e. the pixel distribution of the Hydrography
class was generally not confused with the other classes
in the image. In the study by Caten, Safanelli and Ruiz
(2015), the Hydrography class showed low refl ectance
in relation to the other classes, making any changes both
constant and of little signifi cance.

In general, for the Exposed Soil class, an average
of 79.27% of hits was obtained for the fi ve islands under
evaluation. There was confusion between the Exposed
Soil and Urban Area classes, which can be attributed
to the similarity of the areas and to their size, since the
areas are very small and exposed, making it diffi  cult for
them to be separated by the algorithm. On Itaboca Island,
an accuracy of 84.17% was found for the Exposed Soil
class, in addition to excellent results for the other classes,
resulting in the second-best classifi cation, with a Kappa
Index of 0.73 and overall precision of 77.51% (Table 5).

The Alluvial class had the highest mean accuracy
among the classes, with 80.22%. This class represents all
the areas of açai groves, especially as they are areas subject

Class % Hydrography Soil Urban Area Alluvial Arboreal Lowlands Agriculture Total
Hydrography 72.57 0 0 2.03 0 0 0 8.81
Soil 0 81.40 18.58 2.44 8.17 0.82 4.51 14.38
Urban Area 0 9.88 65.93 0 0 0 0 10.95
Alluvial 26.29 1.16 0 71.14 12.98 20.00 2.87 20.18
Arboreal 1.14 1.74 3.98 17.89 70.19 8.16 0.41 14.84
Lowlands 0,00 5.81 0 4.88 8.65 71.02 12.30 16.09
Agriculture 0 0 11.50 0 0 0 79.92 14.58
Total 100 100 100 100 100 100 100 100
Kappa Index – 0.68 Overall Precision – 72.95 %

Table 6 - Confusion matrix for 2019 for Mutirão Island, district of Igarapé-Miri PA

to fl oods. It was, however, the class with the least pixels
mistakenly distributed in other similar classes, such as the
Arboreal, or even Exposed Soil or Urban Areas, which are
in direct contact with the Alluvial class in question and
where the tonality of the targets is very close.

The mean accuracy of the areas classifi ed as
Arboreal was good, reaching 78.31%, but there was
confusion with the Alluvial class on all fi ve islands. As
these classes include vegetation, such interaction between
similar targets is common, and causes uncertainty when
mapping. However, the Arboreal reference class was
more successfully sampled than the areas characterised
as wrongly classifi ed, demonstrating the diff erences
between classes. The islands of Itaboca and Mutirão
(Tables 5 and 6) have one class in common: Lowlands.
This class represents areas of açaí groves without the
constant presence of water in their interior; its mean
accuracy is the lowest, at 70.65%, being confused with
the characteristics of the Arboreal class.

Comparing the classifi cation results for the fi ve
islands makes it possible to analyse the accuracy, error
of commission and error of omission (Table 8). Jarimbu
Island had the best average performance in terms of
accuracy (86.2%), with the Hydrography and Urban Area
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classes presenting an error of commission of 1% and 0%,
respectively. The error of omission in the Hydrography
class was 3%, and in the Urban Area class, 14%, which
confirms the high level of identification of the areas
belonging to this class. However, Buçu Island had
the lowest value for accuracy (56%) compared to the
other four islands. This can be explained by the error
of omission of 44% and of commission of 6%, which
implies user error in collecting the data when sampling
this class, resulting in pixels left out of their correct
class and assigned to another.

Itaboca Island (Table 8) had the second-best
mean accuracy (78.5%). Analysing the Alluvial class
with 91% accuracy, the error of commission was high
at 43%, indicating the incorrect inclusion of several
standard samples in other classes. On the other hand,
for the same class, the error of omission was lower
(9%), showing that few samples were omitted from
this class. The same was seen on Mamangal Island
for the Arboreal class, where the error of omission
was 11% and of commission, 18%, resulting in a good
accuracy level of 89%. Olofsson et al. (2014) discuss
assessing accuracy as being fundamental to the quality
of mapping in both a quantitative and significant way.

Validating the data for Mutirão Island (Table 8), the
Exposed Soil and Agriculture classes had an accuracy
value of 81% and 80%, respectively; however both the
error of commission and the error of omission were
greater for the Urban Area class. In the study by Souza
et al. (2019), agglomerations, such as smaller patches,
also show similarities, which in turn are confused with
other targets, e.g. sand, roads and exposed soil.

In the study by Duarte and Silva (2019) on
land-use classification by algorithm, these tools can be
used to extract complementary information, helping to
optimise the processes and reduce errors.

Table 8 - Accuracy (AC) and errors of commission (C) and omission (O) related to the fi ve classifi ed islands

Adapted from Souza et al. (2019)

Class %
Island

Jarimbu Mamangal Itaboca Mutirão Buçu
AC C O AC C O AC C O AC C O AC C O

Hydrography 97 1 3 73 6 27 77 3 23 73 4 27 56 6 44
Soil 81 22 19 72 36 28 84 28 16 81 36 19 78 25 22
Urbana Area 86 0 14 47 26 53 72 5 28 66 10 34 84 23 16
Alluvial 86 29 14 79 42 21 91 43 9 71 43 29 75 46 25
Arboreal 81 11 19 89 18 11 77 39 23 70 35 30 74 19 26
Lowlands - - - - - - 70 4 30 71 29 29 - - -
Agriculture - - - - - - - - - 80 12 20 - - -

CONCLUSIONS

1. Space-time analysis by the classification of orbital
images from 2013 to 2019 demonstrated a great
variation in the pattern of land use and cover on the
five islands under study;

2. The overall precision of the method applied in this study
was equal to or greater than 71%, and together with the
quality of the classifi cation (Kappa index greater than 0.64),
demonstrated that the unsupervised ISODATA method can
be important for defi ning the landscape, enabling both
speed and accuracy when mapping. In this study, it was
evident that the results maintained strong agreement
between the classified data and its reference in the
field, the only exception being Mamangal Island,
where the accuracy of the Urban Area class was low
(47%), with errors of commission and omission of 26%
and 53%, respectively;

3. In seven years, the Exposed Soil class doubled in
size on the islands of Jarimbu, Itaboca and Mutirão.
Similarly, the urban areas became more widely
distributed on each of the islands, which is a cause for
concern. On the other hand, the advance and increase
in the Alluvial and Lowland classes is an indication
that the local communities began managing the areas
of açai groves. With the increase in these areas, there
was a reduction in the Arboreal class on the five
islands, confirming more intense management of the
açai groves to the detriment of the native tree cover.
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