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ABSTRACT - The estimation of evapotranspiration (ET) and crop water requirements are crucial for the proper management

and allocation of water resources in terms of quantity, quality, and timeliness. Therefore, remote sensing estimation of ET using

the SEBAL algorithm (Surface Energy Balance Algorithm for Land) can provide spatio-temporal, non-punctual data, unlike

traditional calculations relying on the nearest meteorological station. This research analyzed ET using SEBAL, based on ten

Landsat 8 satellite images processed with a program developed in the Model Builder of ArcGis® version 10.2. The analysis was

conducted during the vegetative period of starchy corn from May to October 2016. Validation of the results happened with a

drainage lysimeter installed in a monitoring plot. Additionally, the statistical indices – such as percentage relative error (PRE)

(0,09), root mean square error (RMSE) (0,30), R2 (0,92), and Nash-Sutcliffe efficiency (NASH) (0,91) – indicated a good

correlation of ET for starchy corn in the central highlands of Peru. The ET identifi ed at ten monitoring points ranged from 1,05 to 7,79 mm d -1.
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INTRODUCTION

Studies have shown that over 60% of the
precipitation reaching the surface through condensation
returns to the atmosphere via the processes of evaporation
(E) and evapotranspiration (ET). This proportion can rise
to as much as 90% due to decreased precipitation and
increased ET in arid areas (Yang et al., 2022). This loss of
water from the Earth’s surface to the atmosphere serves
as a connection between the cycles of water, energy,
and carbon, as well as ecological and hydrological
processes (Aryalekshmi et al., 2021; Guo et al., 2022;
Hu et al., 2021; Yang et al., 2022).

In agriculture, water is mainly consumed as ET
(Paredes et al., 2017) , which is a crucial part of energy
transfer, and has an impact on the growth and development
of plant roots (Tan et al. , 2021).

Remote sensing (RS) is valuable for mapping both
small and large areas (Ali et al., 2021). In comparison to in
situ observations, RS measurements augment regional-scale
data, especially in locales with scarce meteorological data,
such as ET and surface soil moisture (Guo et al., 2022).
Moreover, RS is also benefi cial in estimating parameters like
albedo, Normalized Diff erence Vegetation Index (NDVI), and
Leaf Area Index (LAI) (Aryalekshmi et al., 2021).

The Surface Energy Balance for Earth (SEBAL)
algorithm is a widely applied model for estimating ET
using RS data and exhibits relatively high simulation
accuracy. This model utilizes a hybrid approach
that blends empirical and physical parameterization
schemes (Prakash; Rajitha; Varma, 2020; Wei et al., 2022).
The estimation of crop ET is carried out without the use
of potential evapotranspiration (PET) or a tabulated
crop coeffi  cient (Kc) (Aryalekshmi et al., 2021). It is an
algorithm developed by Bastiaanssen et al. (1998) and
later enhanced by Allen et al. (2005)  to  estimate  ET
in terms of the instantaneous surface energy balance
(Tan et al.,  2021). Due to its versatility, it  has been used to
estimate the ET of various crops around the world such as
sugarcane (Goshehgir; Golabi; Naseri, 2021; Kiptala et al.,
2018) and maize in Iran (Kamyab; Mokhtari; Jafarinia, 2022)
and Turkey (Shamloo et al., 2021).

The accuracy of the ET estimated by SEBAL
has been investigated and can reach 85% for daily ET
(Laipelt et al., 2021), 95% for fi eld-scale station-wide ET,
and 96% for annual ET in large catchments (Shamloo et al.,
2021; Wei et al., 2022). Also, it has been developed in
over 30 countries, such as Saudi Arabia, Brazil, China,
the United States, Egypt, Ghana, India, Iran, and Italy,
due to its low dependency on soil data. According to Cha,
Li y Wang (2020), in countries like China, India, Spain,
and Pakistan, results have shown that the accuracy of the
estimated ET is consistently 85%, even when compared

with uncalibrated fi eld measurements, thereby yielding
consistent and accurate results.

Here  we aimed to  estimate  the  ET of  the  starchy
corn (Zea mays L.) crop using RS techniques and the
SEBAL algorithm under the conditions of the Peruvian
mountains (Huaylas Valley) during the year 2016.

MATERIAL AND METHODS

Figure 1 illustrates the methodological progression
of the research, beginning with the collection of fi eld data
and acquisition of Landsat 8 Operational Land Imager
(OLI) satellite images. Both were biweekly monitored
during the crop’s vegetative period. Subsequently, the
SEBAL algorithm was employed to estimate crop ET.

T he study area is located in Peru, Ancash
department, in the Santa River basin, in the open Andean
valley of Huaylas north of Lima, between the Pacifi c
Ocean and the Marañón River, between important
mountain ranges, the Cordillera Blanca and the Negra,
between the provinces of Carhuaz and Yungay (Figure 2a-b).
Between the latitudes and longitudes of 9º20’00’’-9º40’00’’S
and 77º33’00’’-77º48’00’’W, respectively. It has an average
elevation of 2600 m, slopes less than 20º, semi-dry and
temperate climate, with summer rainfall (October to March)
ranging from 300 to 700 mm annually, with maximum
temperatures between 21 to 28 °C and minimum temperatures
of 2 to 9 °C, temperatures decrease with height at a rate
of 0,5 ºC for every 100 meters (Cubas et al., 2013). The
main tributary is the Santa River, which fl ows from south
to north. Its lands are very rich for agriculture and there
are currently large fi elds of corn, potatoes, fl owers, and
fruit trees; in the area under study, 85% of starchy corn
with dry and green grains predominates. Corn, along with
rice and wheat, is considered the most cultivated cereals
in the world and is one of the foods that guarantee food
security for the population (Garcia et al., 2007). In turn,
in Peru alone, a production of 818 983.91 t of corn was
obtained in 2022, representing the fourth product with the
highest production in the country (Peru, 2022).

Satellite images and Digital Elevation Model

Ten Landsat  8 OLI images were used, which were
downloaded biweekly throughout the vegetative period
of starchy corn, a crop planted in the experimental plot
from May 14 to October 5, 2016, with cloudiness less
than 50%. The images were obtained from the United
States Geological Survey (USGS), Global Visualization
Viewer (GloVis) server, available at https://glovis.usgs.
gov/app?fullscreen=1.In all images, the approximate
capture time was 15:16 UTC (Coordinated Universal Time),
and the column and row were 8 and 66, respectively (Table 1),
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Figure 1 - Methodological outline of the research

and the characteristics of the bands are presented in Table 2.
The Digital Elevation Model (DEM) was generated based
on the national chart scale of 1:100000 available at http://
sigmed.minedu.gob.pe/descargas/.

The two meteorological stations utilized, Tingua
and Cañasbamba (Figure 2-c), as well as the radiometer

Table 1 -  D ata from the 10 Landsat 8 OLI satellite images

Image No. Date Time (UTC) Image No. Date Time (UTC)
1 14-May-2016 15:15:52.85 6 2-Aug-2016 15:16:21.44
2 30-May-2016 15:15:59.49 7 18-Aug-2016 15:16:25.75
3 15-Jun-2016 15:16:01.93 8 Sep 3, 2016 15:16:32.02
4 1-Jul-2016 15:16:11.20 9 Sep 19, 2016 15:16:34.32
5 17-Jul-2016 15:16:18.09 10 5-Oct-2016 15:16:36.61

(Figure 2-d), are part of the Environmental Research
Center for Development at Santiago Antúnez de Mayolo
National University (CIAD-UNASAM). Data on
precipitation, temperature, radiation, and evaporation
were collected daily and evaluated biweekly, enabling
the estimation of PET using the ETR.REF software that
employs the standardized Penman-Monteith method.
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 Concurrent with the data collection in the
experimental plot, 11 points (PM) distributed across
the analysis area were monitored. These points featured
both dry and green starchy corn crops in various
phenological stages (initial, medium, and maturation),
reflecting the farmer’s initial decision when planting
the crop (Figure 2-c). Points 10 and 11 were located
within the experimental plot (Figure 2-d).

T he calibration of the SEBAL model was carried
out by monitoring the vegetative period of starchy corn
in a 2 ha experimental plot at the Cañasbamba Research
Center. A radiometer and drainage lysimeter were installed
in the plot to measure radiation and ET respectively
(Figure 2-d). The starchy corn variety was chosen due
to its lengthy vegetative period of 5 to 6 months and its
higher resistance to pests and diseases.

SEBAL methodology

The SEBA L methodology, proposed by Bastiaanssen
et al. (1998), is a robust tool for estimating ET based on
RS data. SEBAL calculates the ET in terms of latent heat
fl ux (λET), using a surface energy balance, integrating net
radiation (Rη), soil heat fl ux (G) and sensible air heat fl ux
(H). The energy balance is expressed by equation 1.

HGRET --=                                                                                                                                        (1)

SEBAL has been studied and explained in detail,
from input data such as elevation, satellite imagery,
and meteorological data to the fi nal derivation of ET
to Bastiaanssen et al. (1998), Ghaderi et al. (2020),
Rahimzadegan y Janani (2019) y Waters et al. (2002). The
calculation performed to obtain λET was for each pixel
included in the study area and the ten images analyzed, so

Band Sensor Wavelength Spectral
resolution (µm)

Radiometric
resolution (bits)

Spatial resolution
(m)

Temporary
resolution (days)

Band 1 - coastal aerosol OLI 0.43 – 0.45 16 30 16
Band 2 - blue OLI 0.45 – 0.51 16 30 16
Band 3 - green OLI 0.53-0.59 16 30 16
Band 4 - red OLI 0.64 – 0.67 16 30 16
Band 5 - Near Infrared (NIR) OLI 0.85-0.88 16 30 16
Band 6 - Shortwave Infrared (SWIR) 1 OLI 1.57-1.65 16 30 16
Band 7 - Shortwave Infrared (SWIR) 2 OLI 2.11 to 2.29 16 30 16
Band 8 - Panchromatic OLI 0.50-0.68 16 15 16
Band 9 - Cirrus OLI 136 – 1.38 16 30 16
Band 10 - Thermal Infrared (TIRS) 1 TIRS 10.60 – 11.19 16 100 16
Band 11 - Thermal Infrared (TIRS) 2 TIRS 11.5 – 12.51 16 100 16

 Table 2 - Characteristics of the Landsat 8 OLI sensor bands

Note: OLI = Operational Land Imager, TIRS = Thermal Infrared Sensor, band 11 was resampled to 30 m

automated programming was performed in Model Builder
of ArcGis® ESRI version 10.2, to streamline geospatial
workfl ows for repetitive and iterative calculations required
in the analysis. Figure 3 shows the toolbox with the model
elements (tools, variables, connectors), which contains 18
models representing the steps required for estimating the
ET of the analyzed satellite images.

Validation of evapotranspiration results

To validate the ET estimated using the SEBAL
algorithm, we compared it with measurements taken
from a drainage lysimeter with dimensions of 1.20 m
in length, 0.80 m in width, and 1 m in height. We installed
this lysimeter in an experimental plot where starchy
corn was being grown under similar fi eld conditions. A
container was positioned under the lysimeter to collect the
drained water. We recorded both the infl ow and outfl ow
from the lysimeter to determine the ET in the fi eld,
taking into account factors like irrigation, humidity, and
drainage. We derived the daily value, which is expressed
in millimeters per day, by subtracting the stored irrigation
depth and the drained depth from the applied irrigation
depth, as narrated in the article by Lyles et al. (2024).

To validate the congruence between the measured
and estimated values employing the SEBAL algorithm,
statistical metrics like Pearson Correlation (PRE), Root
Mean Square Error (RMSE), Coeffi  cient of Determination
(R2), and Nash-Sutcliff e  Effi  ciency (NASH) were utilized.
The specifi c equations for these statistics are detailed
meticulously in Ferreira, Paz, and Bravo (2020).

Fundamental approaches to data clustering in
statistical and machine learning analysis
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Figure 2 - Location of (a) Ancash Department in Peru, (b) location of the study area in the provinces of the Huaylas alley, (c)
study area in yellow line, Tingua and Cañasbamba meteorological stations in green triangles and the 11 monitoring points (MP)
in red dots and (d) limit of the Cañasbamba Experimental Center (red line), experimental plot (green fill) in which the drainage
lysimeter and radiometer were located
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 Figure 3 - Model Builder design prepared for SEBAL processing
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K-means cluster analysis is a widely-used technique
to partition a dataset into k clusters, where each observation
belongs to the cluster with the nearest centroid. This
technique is effi  cient and easy to implement, but it requires
pre-specifi cation of the number of clusters (k). The algorithm
iteratively assigns points to the nearest centroids and
recalculates the centroids until the assignments no longer
change. It is also worth mentioning that hierarchical cluster
analysis is another popular technique that does not require
pre-specifi cation of the number of clusters. Specifi cally, the
Ward.D2 method stands out for its ability to minimize the
total variance within clusters. It begins with each observation
in its cluster and merges the two clusters resulting in the
smallest increase in the sum of squared errors at each step.
This process produces a dendrogram, which is a tree-like
visual representation of the hierarchical relationships between
observations. It enables the identifi cation of cluster structures
at diff erent levels of aggregation (Soetewey, 2024).

RESULTS AND DISCUSSION

Selecting the representative pixel for product evaluation:

This study analyzed ten Landsat 8 satellite images,
each with a spatial resolution of 30 meters, captured between
May 14 and October 5, 2016. The aim was to evaluate the
behavior of ET during the phenological period of the starchy
corn crop in Callejón de Huaylas, located in the Peruvian
highlands. The choice of starchy corn as a subject of this study
was dictated by its profi tability, low requirements for manual
labor, and easily accessible location. As depicted in
Figure 2c, the study area is conveniently positioned near the
main interprovincial transport route and is sown with both
dry and green starchy corn throughout the year. The analysis

Figu  re 4 - Temporal variation of starchy corn phenology in
the experimental plot (Parc) and drainage lysimeter (Lis) at the
stages of (a) beginning, (b) development, (c) middle, and (d) end

revealed variations in ET during the maize growth cycle. This
essential data can potentially improve irrigation practices and
overall water management in regional agriculture. The results
affi  rm that satellite imagery is an eff ective tool for monitoring
ET, signifi cantly contributing to water resource sustainability
and agricultural planning in the Callejón de Huaylas.

The results were validated using the drainage
lysimeter situated in the experimental plot of the Cañasbamba
Research Center (see Figure 2d). It was determined that the
ET estimated with SEBAL corresponds to PM 10 (as shown
in Table 3), given that it is the crop closest to the lysimeter.
Figure 4 presents the temporal variation of the experimental
plot from the initial to the development, middle, and fi nal stages.

Table 3 - Time values of the variation of the components of the SEBAL algorithm

Note: α is the dimensionless albedo, Rn is the net radiation, G is the ground heat fl ux, H is the air heat fl ux, and LE is the Latent Heat Flux, all expressed
in W m -2 all calculated in PM10. PET indicates the Potential Evapotranspiration of the Cañasbamba (Cañ) and Tingua (Tin) Meteorological Station,
expressed in units of mm d -1. Evapotranspiration (ET) values are represented for the SEBAL algorithm in the experimental plot (Parc) and Drainage
Lysimeter (Lis) expressed in mm d -1, NA indicates an undetermined value

Date α Rn (W m-2) G (W m-2) H(W m -2) LE (W m-2) PET Cañ
(mm d-1)

PET Tin
(mm d-1)

ET PM10
(mm d- 1)

ET Lis
(mm d-1)

14 -May-2016 0.20 523 93 312 118 6.7 6.8 1.4 NA
30-May-2016 0.20 497 94 262 141 6.6 6.9 1.9 NA
15-Jun-2016 0.19 496 90 196 210 6.4 6.7 3.1 2.7
01-Jul-2016 0.20 486 84 189 213 6.2 6.4 3.1 2.8
16-Jul-2016 0.17 518 87 198 233 6.2 6.4 3.2 2.9
02-Aug-2016 0.15 563 91 188 284 5.7 6.2 3.5 3.2
18-Aug-2016 0.13 608 102 191 315 7.2 7.3 4.8 4.4
03-Sep-2016 0.12 662 108 160 394 7.4 7.8 6.0 5.9
19-Sep, 2016 0.13 680 101 247 332 7.6 7.0 4.1 4.4
05-Oct-2016 0.14 702 104 270 328 5.5 5.5 2.8 3.1
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The PET obtained for the meteorological stations
indicates similar behavior, although it is slightly higher
in Tingua (EM Tin) compared to Cañasbamba (EM Cañ).
Given that EM Tin is situated at a higher elevation than EM
Cañ, this can be explained in line with Bennie et al. (2008),

who postulate that PET tends to decrease with elevation
because of a decrease in air temperature. Nevertheless,
they also acknowledge that other factors, such as
incident solar radiation and wind speed, can infl uence
this relationship due to local conditions (Figure 5).

Figure  5 - Spatio-temporal variation of evapotranspiration (ET) in mmd -1 in the study area ( Figure 2c) during the analysis
period, (a) 14-May-2016, (b) 30-May-2016, (c) 15-Jun-2016, (d) 01-Jul-2016, (e) 17 Jul-2016, (f) 02-Aug-2016, (g) 18-Aug-2016,
(h) 03-Sep-2016, (i) 19-Sep-2016, (j) 05-Oct-2016. The variation of the ET ranges from 0 mm d -1 to 10 mm d -1
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Analysis of Rn, G, H

In the experimental plot (PM10 located 25 m
from the radiometer), Rn values were found to range
from 486 to 710 W m -2. This is consistent with those
suggested by Waters et al. (2002), who indicated that
the Rn range is between 100–700 W m-2, depending
upon the spatial and temporal location of each cell in
the raster. However, on 05/10/2016, results exceeded
this range (Table 3). Rn is related to both short and
long-wave radiation, which are in turn directly
related to surface temperature. In areas where the
surface temperature is high, the radiation is also high.
Conversely, radiation has an inverse relationship with
albedo (Rahimzadegan; Janani, 2019).

The heat flux (H) is lower during the longest
vegetative period due to the excessive absorption of
radiation by the large leaf area. It tends to reach its peak
during the day and decrease in the afternoon. These
results are consistent with the research conducted by
Zhang et al., 2010, who recorded maximum values
of up to 300 W m-2 in a corn crop field. Meanwhile,
the ground heat flux (G) varies from 66 to 108 W m-2,
demonstrating little variability on the reference scale
of net radiation (Rn) and H.

The ET estimate, obtained through SEBAL from
the pixel nearest to the drainage lysimeter (PM10),
demonstrates that the net radiation (Rn) peaked from
September to October. The soil heat fl ux (G) remains
consistent throughout the temporal analysis, while
the sensible heat fl ux (H) recorded its lowest levels
in September. Consequently, as a result of the energy
balance, the latent heat fl ux (LE) reached its peak during
the maximum vegetative period of the monitored crop on
September 3, 2016 (Figure 6a and Table 3).

These results are consistent with those indicated
by, those who investigated that the increase in ET in some
areas was mainly related to the increase in wind speed,
which is also related to greater net solar radiation and air
surface temperature. Ruiz et al. (2011) indicate that the
increase in temperature also modifi es the ET rates, which
generates an increase of 3.4% for each degree Celsius
of increase; consequently, it infl uences the decrease in
precipitation and the reduction of land suitability and
economic performance (Kimball, 2015).
Importance of monitoring points

The spatio-temporal variation of ET in the study
area, analyzed at 11 PM over 10 dates, ranged from a
minimum of 1.05 to a maximum of 7.79 mm d-1 The
spatiotemporal variability indicates a clear representation
of diff erent sowing dates in the study region. Given that
the land is owned by various farmers, even those with
minimum areas of 120 m2, market demand can infl uence

Figure 6 - Temporal variation of (a) potential evapotranspiration from
the Tingua (EM Tin) and Cañasbamba (EM Cañ) meteorological
stations, represented by fi lled and unfi lled circles respectively; (b)
Components of the SEBAL algorithm (Surface Energy Balance
Algorithm for Land) such as net radiation (Rn), soil heat fl ux (G),
sensible air heat fl ux and latent heat fl ux (LE), are represented by
fi lled rhombus, unfi lled square, unfi lled rhombus and fi lled square
respectively, all calculated in PM10

the start of sowing intentions on diff erent dates. Cluster
analysis revealed that the ET varies due to the sowing
date, latitude, and elevation. This analysis determined
that the 11 PM are distributed into four groups with
diff erent characteristics (Figure 7). As evident in Table 4,
groups 1, 2, 3, and 4 reached their maximum values
during the middle phase in September, with ET values
of 6.00 mm d-1;  7.79 mm d-1;  5.45 mm d-1;  5.23 mm d-1

respectively. Additionally, groups 2, 3, and 4 presented
an additional middle phase in May, with maximum ET
values of 6.00 mm d-1;  5.49  mm  d-1 and 5.88 mm d-1

respectively (Figure 8).

Table 4 presents the ET results for various experimental
groups dealing with starchy corn. Group 1, composed of
measurement points PM10 and PM11, is situated at
latitudes 9°6’01’’ and 9°5’56’’ respectively and shows an
average ET of 3.47 mm d⁻¹ and 3.29 mm d⁻¹. These fi ndings
aptly demonstrate that ET can vary spatiotemporally in
adjacent plots, as these plots exhibited distinct growth
patterns due to diff ering soil types.

Group 2, which comprises measurement points
PM1, PM4, and PM7, is installed with green-grain
starchy corn at elevations higher than 2550 m. The
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latitudes range between 9°8’23’’ and 9°16’37’’. This group
shows the highest average ET values across the analysis
area, with 4.53 mm d⁻¹, 5.39 mm d⁻¹ and 5.57 mm d⁻¹
respectively.

Group 3, which also has green starchy corn, includes
the PM2, PM3, and PM5 measurement points. These points
are situated at elevations between 2450 and 2600 m, and
latitudes greater than 9°10’ S. They exhibit average
ETs of 4.19 mm d⁻¹, 4.05 mm d⁻¹ and 4.52 mm d⁻¹
respectively.

Finally, Group 4 – which includes measurement
points PM6, PM8, and PM9, located at latitudes lower
than 9°10’ S – represents the second group with the
highest average ET. The respective values for these
points are 4.82 mm d⁻¹, 4.58 mm d⁻¹ and 4.11 mm d⁻¹
respectively.

The current study bolsters Bennie et al. (2008)‘s
fi ndings, asserting that ET at higher elevations can
be augmented by specifi c local conditions such as
solar radiation and wind speed. These factors may
counterbalance the general trend of ET diminishing at
greater altitudes.

The four groups display distinct phenological
behaviors. Groups 1 and 2 showcase similarity in their
sowing dates, such that both groups reach a maximum

ET in September (middle phase). Group 2 exhibits the
highest values, primarily due to the crops being planted
at high elevations. In contrast, groups 3 and 4 consist
of crops with two phenological periods identified
within the same crop type (green-grain starchy corn).
The initial monitoring phase in Group 1 aligns with
the middle phase of groups 3 and 4, suggesting that at
lower latitudes, the ET is higher (Figure 8).

From the analysis of the phenological phases of
the four groups, we found that the developmental phase
had an average ET of 3.27 mmd-1; 5.35 mm d-1; 4.02 mm d-1

and 4.44 mm d-1 respectively. Meanwhile, the middle phase
had an average ET of 5.95 mm d-1; 5.79 mm d-1 ; 4.69 mm d-1

and 5.26 mm d-1 respectively (Figure 9).
The results show that ET exhibits spatial

and temporal variability due to a range of factors,
including precipitation, solar radiation, air and surface
temperature, wind speed, soil hydraulic characteristics,
elevation, land use, and vegetation types among
others (Aryalekshmi et al., 2021; Tan et al., 2021).
Consequently, accurate and swift estimation of ET is
vital for assessing, planning, optimizing, monitoring,
and managing water resources consumption (Ali et al.,
2021; Asadi; Kamran, 2022; Kamyab; Mokhtari;
Jafarinia, 2022), as well as for hydrology, climatology
(Aryalekshmi et al., 2021), meteorology, and geography
(Yang et al., 2022).

Cluster May 14 May 30 Jun 15 Jul 1 Jul 16 Aug 2 Aug 18 Sep 3 Sep 19 Oct 5 average

1 1.68 2.00 3.20 3.15 3.38 3.68 4.94 6.00 4.25 3.00

PM 10 1.68 2.00 3.00 3.07 3.38 3.68 4.73 5.91 4.25 3.00 3.47

PM 11 1.05 1.85 3.20 3.15 2.99 3.25 4.94 6.00 3.92 2.59 3.29
2 6.00 5.67 5.69 5.19 5.29 4.89 5.89 6.85 7.79 5.22
PM 1 4.85 4.59 4.68 4.08 4.18 4.26 4.60 5.99 4.37 3.73 4.53
PM 4 5.36 5.32 5.49 5.19 5.29 4.69 5.89 6.65 4.84 5.22 5.39
PM 7 6.00 5.67 5.69 4.84 4.53 4.89 5.63 6.85 7.79 3.83 5.57
3 5.49 5.07 4.81 4.08 4.31 3.83 4.88 5.45 4.96 4.99
PM 2 5.49 5.07 4.81 3.00 2.69 3.04 4.61 4.80 4.09 4.26 4.19
PM 3 4.16 4.08 4.49 3.81 3.30 3.31 4.28 4.96 4.16 3.67 4.05
PM 5 4.18 4.20 4.30 4.08 4.31 3.83 4.88 5.45 4.96 4.99 4.52
4 5.88 5.66 5.62 5.27 4.97 3.46 3.92 4.92 5.23 5.49
PM 6 5.88 5.66 5.62 5.27 4.87 3.46 3.22 3.89 4.86 5.49 4.82
PM 8 5.22 5.27 5.22 4.90 4.97 3.28 3.92 4.92 5.23 2.84 4.58
PM 9 5.41 5.14 5.03 4.63 2.70 2.12 3.26 4.72 4.87 3.28 4.11

Table  4  - Maximum daily evapotranspiration (grey fi ll) and average (green fi ll) estimated with the SEBAL algorithm in the four
identifi ed groups; Group 1 (PM 10 and 11), Group 2 (PM 1, 4 and 7), Group 3 (PM 2, 3 and 5) and Group 4 (PM 6, 8 and 9)
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(

(

(

Figure 7 - Evaluation of the monitoring points, through cluster analysis with the k-means method (a), hierarchical dendrogram based
on the ward.D2 method (b), cross-correlation (c), through which 4 groups with similar ET behaviors are identifi ed in the phenological
period of the starchy corn crop

Model reliability
The statistics analyzed in Table 5 yielded an

RMSE of 0.30, suggesting an error margin nearing
zero (Cabrera, 2017). Additionally, the R2 value was 0.95,
indicating a strong correlation to a perfect linear fit

(Martinez, 2005), and a NASH score of 0.92, signifying
an excellent model performance (Terrazas, 2016).

The information in this article can be found in
the following supplementary material link.
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Figure 8 - Temporal variation of evapotranspiration (ET) from May to October in the lysimeter (Lis), experimental plot (Parc), and
the 11 monitoring points (PM) from south to north of the province of Carhuaz PM1, PM2, PM3 to the province of Yungay PM4 to
PM11. (a) ET between Parc and Lis during the beginning, development, middle, and end phenological period of starchy corn. (b) ET in
Group 1 consisting of PM10 and PM11 installed with starchy corn. (c) ET in Group 2 consisting of PM1, PM4, and PM7 installed with
green-grain starchy corn at elevations greater than 2550 m. (d) ET in Group 3 consisting of PM2, PM3, and PM5 installed with green
starchy corn at elevations between 2450 to 2600 m, at latitudes greater than 9°10’ S. (e) ET in Group 4 consisting of PM6, PM8, and
PM9 installed with green-grain starchy corn, at latitudes lower than 9°10’ S
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(

(

(

(

(
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Figure 9 - Variation in average evapotranspiration (ET) of the four identifi ed groups and according to the phenological development
that includes the beginning (blue bars), development (orange bars), middle (grey bars), and end (yellow bars)

Statistics Result
Percentage relative error (PRE) 0.09
Root mean square error (RMSE) 0.30
Coeffi  cient of determination (R2 ) 0.92
Nash- Sutcliff e (NASH) effi  ciency 0.91

Table 5 - Statistical values of ET estimation with the SEBAL algorithm and measured with the drainage lysimeter

CONCLUSIONS

1. The spatio-temporal variability of the actual ET
of starchy corn in a representative location in the
Peruvian highlands was identified using the SEBAL
algorithm and LANDSAT 8 satellite images. This
variability depends on several factors such as
elevation, latitude, radiation, phenology, and sowing
date. In the Callejón de Huaylas;

2. The ET ranged from 1.05 mm d-1 to  7.79  mm  d-1.
This analysis is essential for determining the water
requirements of crops and provides vital information for
individuals responsible for water resource management.
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