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ABSTRACT - The recognition of oocytes, in their maturational stages, allow estimate the ovarian development and the type of

spawning of a species. Although, distinguishing oocytes on histological images requires a visual and subjective interpretation

by the specialist. With the development of deep learning techniques, automatic object detection has become an important

mechanism for this task. However, studies that use deep learning techniques have not been widely explored for the analysis of

fish oocyte samples so far. In this paper, we propose the use of YOLO, a family of convolutional neural networks, for oocyte

morphology detection of Centropomus undecimalis fish. The research uses an image database with 5,680 oocytes with different

maturation stadiums (PV - pre-vitellogenesis, VI - early vitellogenesis and VF - late vitellogenesis), in histological images,

divided into training, testing and validation, and detection performed by YOLOv3, YOLOv4, and YOLOv5 architectures. The

results obtained were promising, highlighting that the YOLOv5l model, in the detection of oocytes of the VF class, reached the

best values in the metrics precision, recall, mAP@.5 and mAP@.95, with 85.4%, 95.3%, 95.7%, and 75.9%, respectively. When

considering all classes, YOLOv5l was the model that obtained the best results in the analyzed metrics.
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INTRODUCTION

A Fish is a food of excellent nutritional value due to
its high biological value proteins, vitamins and unsaturated
fatty acids (Albuquerque; Vieira; Vieira, 2006). According
to FAO data, fi sh consumption by the global population has
been increasing about 1.5% per year, shifting from 9 kg/
inhabitant in 1961 to 20.7 kg/inhabitant in 2022 (FAO, 2024).
In Brazil, in 2022, there was an increase of 3% compared
to the previous year, reaching 2.15 million tons, the
second best performance since 2014, according to the
SeafoodBrasil (2022).

Specifi cally, the wide capture of the species
Centropomus undecimalis (Bloch, 1792) through artisanal,
industrial and sport fi shing, developed on the Amazon
coast, has been causing concerns (Pereira et al., 2020),
since most of the marine fi sh reserves, about 70%, are
found in areas where there is intense exploration. In view
of this fact, the risk of interruptions in the reproductive
cycle of these fish is increased (Rosa; Lima, 2008).
Such a number, in addition to affecting world marine
fishing, threatens food security on a global scale.

Faced with this situation, the lack of monitoring
of this fish makes it impossible to analyze information
regarding biological and reproductive aspects. In
this sense, studies that address the determination
of the development and sexual maturation of fish
are fundamental to the science of fisheries and are
prerequisites for understanding the life cycle of fish
(Sivakumaran et al., 2003). The most suitable method for
determining the reproductive cycle in fi sh is the observation
of changes in gonadal (Karlou-Riga; Panos, 1996).
Especially in studies related to females, oocytes are
fundamental for this analysis.

Thus, researchers require the use of histological
images, that provide information on morphological
changes in the germ cells of a species (Mendonça, 2004).
Germ cells, better known as oocytes, are structures that
have a generally spherical shape, consisting of follicular
cells, yolk envelope, yolk granules, cytoplasm, and a
nucleus (Rhody et al., 2013).

The maturational stages described by Vazzoler
(1996) are fundamental to understanding the reproductive
development of organisms. The fi rst stage, called immature,
is characterized by the absence of evident secondary
sexual characteristics and by the initial development of the
reproductive organs, with no signs of reproductive activity
and with an immature gonadal structure. In the developing
stage, the reproductive organs begin to show signs of
maturation, with the formation of gametes, such as eggs
in the ovaries and sperm in the testes, although there is
still no eff ective reproductive activity. The mature stage is
marked by the full development and functionality of the

reproductive organs, with ovaries containing eggs ready
for spawning and testes producing suffi  cient sperm for
fertilization. Finally, in the post-reproductive or senescent
stage, a reduction in reproductive activity is observed,
with regression of the reproductive organs and a decrease
in reproductive capacity. The classifi cation of these stages
is crucial for studies of biology and ecology, particularly in
the management and conservation of species populations.

Object detection is an important computer vision task
that, aims to identify and locate objects (Redmon et al., 2016).
For this purpose, techniques that address convolutional
neural networks have been used that aim to bring
machine intelligence closer to the human level, making
them capable of solving any problem in a specific
subject (Fracarolli et al., 2021). One of these is YOLO
(You Only Look Once), developed originally by
Joseph Redmon in 2016, which consists of a method to
identify and locate objects with a single forward pass,
which speeds up predictions in real time. YOLO was
originally developed for detecting objects in natural images,
but the algorithm can be applied to different domains
like skin (Nie et al., 2019) and cell cancer detection (Aly
et al., 2021), blood cell count (Jiang et al., 2021), outer space
object detection (Liu; Xiao; Chengchao, 2019), zebra-fi sh
monitoring (Barreiros et al., 2021). Here we propose using
YOLO networks for detection and identifi cation of oocytes.

Distinguishing objects on histological images is a
time-consuming and error-prone procedure, as it requires
visual and subjective interpretation by the expert. In this
paper, a method is proposed to detect oocytes at diff erent
stages in histological images using the YOLOv3, YOLOv4
and YOLOv5 architectures. Thus, the development of
computational methods should speed up and improve the
identifi cation of oocytes, which on its turn which on it is
turn is an important step on monitoring of the economically
signifi cant Centropomus undecimalis fi sh species.

MATERIAL AND METHODS
Our method has four steps: acquisition of images,

database partitioning, data augmentation, and application of
YOLO architectures for object detection and classifi cation.
We evaluated YOLO architectures to identify the stages of
oocyte development pre-vitellogenesis, early vitellogenesis
and fi nal vitellogenesis. Figure 1 shows the steps of the
proposed method for automatic oocyte detection.

Acquisition of Images
The samples of histological images of the fi sh gonads

were obtained from the Graduate Program in Biodiversity
and Biotechnology of the Legal Amazon (BIONORTE)
and the Graduate Program in Computer and Systems
Engineering of the State University of Maranhão (UEMA).
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Figure 1 - Steps of the method used in this work

The samples of fi sh of the species C. undecimalis were
obtained through direct purchase at a fi sh merchant, found
in the city of Tutóia (2°45’44’’’ S; 42°16’28’’’ W), the state
of Maranhão (Figure 2). All samples were bought monthly
during the period from January 2019 to February 2020.

The fish were stored in Styrofoam with
ice, sealed with tape and sent to the Laboratory of

Fisheries and Aquatic Ecology at UEMA, where they
were identified. The specimens were then counted,
measured, weighed, and processed to remove gonads
and other viscera. Some gonads were stored in flasks
with Bouin’s solution for 24 hours and then transferred
to a 70% alcohol solution for further histological
analysis.

Figure 2 - Map of the study area highlighting with location points the sample capture range (from Travosa to the Parnaíba Delta) and
with a red circle the municipality of Tutóia, place of purchase of C. undecimalis sea bass specimens on the north coast of Brazil
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In this study, a total of 15 females were
evaluated, with the aim of investigating the dynamics
and maturation of female gametes. The choice to
focus exclusively on female gametes was due to the
fact that detailed analysis of the eggs can provide
crucial information about the reproductive processes
and fertilization potential of the population studied. In
addition, the study focused on females allows a more
specific approach to the management and conservation
of aquatic species (Vazzoler, 1996).

In the process of preparing slides, histological
procedures were used to section the ovaries. Sections
were stained with Hematoxylin and Eosin (H&E), then
images were captured by a LEICA DM 500 microscope
in an enlargement of x200. The additional equipment
used were a LEICA EC4 digital camera directly
connected to the microscope and LEICA LAS EZ image
acquisition software, compatible with the equipment
and a Sony monitor for viewing.

The image base developed consists of 305
histological images. This base can be made available
later, allowing more research to be conducted in this
field, expanding the monitoring of this species, since
the fish under study presents a peculiar characteristic
of sexuality, the protandrous hermaphroditism, are
individuals that first mature as males and later change
sex and remain mostly as females for the rest of their
lives (Sousa, 2011).

Ethics Committee

All methodological procedures for fi sh management
were approved by the Ethics Committee of the State
University of Maranhão (n°. 4.476.902/2020). The
species of C. undecimalis were acquired monthly through
commercial purchases in the city of Tutóia, Maranhão, from
January 2019 to February 2020 (Nascimento et al., 2022).

Division of the Image Base

The Database images were used in order to organize,
label and divide the images with histological cuttings of the
fi sh C. undecimalis. The software Robofl ow was used to
support this task. After the acquisition step, the expert, making
use of the delimiter box, labeled in TXT format, 305 images,
following specifi c patterns for YOLOv3, YOLOv4
and YOLOv5. The generated fi le consists of a set of
coordinates that identify the objects in an image with
annotations in a standardized way (Everingham et al., 2015).

In the structure of the TXT fi le one object per line is
presented, in each line information is provided such as class
number, center in x, center in y, width in w and height in h of
the object. The classes are numbered, starting with zero: Class
0 (PV - pre-vitellogenesis), class 1 (VI - early vitellogenesis)
and class 2 (VF - late vitellogenesis). According to Redmon
and Farhadi (2018), the coordinates of the object bounding
box should be arranged in xywh normalized between [0,1].
Figure 3 shows the labeled oocytes in the image with their
respective classes and coordinates.

Figure 3 - Process of labeling the oocytes in the image. (a) Image labeled by the specialist. (b) File in TXT format for YOLOv5 pytoch
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One of the attributes present in the labels represents
the stages of oocyte maturation development. The phases
used in this research were chosen due to the frequency of
these oocytes in the images, because according to Chlap
et al. (2021) deep learning-based techniques require a
large number of objects for a more effi  cient detection.

To validate the detection, model the image base
was randomly subdivided into three sets, according to
what is specifi ed in the research of Nie et al. (2019):

Training: the training set contains 244 images
(2,393 PV; 633 VI; 1,500 VF);

Validation: the validation set contains 31 images
(299 PV; 51 VI; 139 VF);

Test: the test set contains 30 images (374 PV; 98
VI; 193 VF).

A set of 5,680 oocytes were labeled by an expert.
The class 0 (PV) has 3,066 oocytes, the class 1 (VI) has 782
oocytes and the class 2 (VF) has 1,832 oocytes. Table 1 shows
in detail the division of the data.

Data augmentation

Data augmentation is a set of techniques used
to create new training examples from existing data
(Hussain et al., 2018). These techniques are intended
to auxiliary in the generalization of the machine learning
model. For this research, the image base built contains 305
samples, which is considered small for training a deep
learning model. Making use of the Robofl ow software
(Bochkovskiy; Wang; Liao, 2020), we employed the
following data augmentation techniques for robust
prediction, Flip, 90° Rotation, Crop, and Random Rotation.

Flipping, or inversion, consists of creating mirrored
versions of the images, helping the model to recognize
objects in diff erent orientations and perspectives, thus
increasing generalization (Shorten; Koehring, 2019).
90° rotation applies fi xed rotations to provide the model
with a diverse view of the images, promoting invariance
to specifi c rotations and facilitating the identifi cation of

objects at any angle (Tamminen et al., 2018). Cropping
involves randomly cutting out parts of the images, forcing
the model to learn relevant features from diff erent regions,
which improves its ability to deal with partially visible
images and vary in scale (Zhao et al., 2020). Finally,
random rotation applies rotations at varying angles,
increasing data variability and allowing the model to
become more robust in recognizing objects regardless of
their orientation (Hong; Bai; Cao, 2016).

Machine learning sample splitting typically
follows the practice of separating data into three distinct
sets: training, validation, and testing. The common setup
for these splits is to use approximately 80% of the data
for training, 10% for validation, and 10% for testing
(Kohavi; John, 1997). Therefore, after using these
techniques, a set of 759 images were generated, which
were divided into 708 images for training, 31 images for
validation and 30 images for testing.

Evaluation Metrics

Various evaluation metrics are used to fi nd out the
performance of the classifi er. The evaluation metrics used
in the study are explained below.

A confusion matrix was used to express
classifi cation accuracy numerically. The confusion matrix
is one of the most commonly used techniques in machine
learning, and it includes information about the actual and
predicted classes obtained by a classifi cation system.
The confusion matrix has two dimensions: actual and
predicted classes. While each row represents an actual
class example, each column represents the state of a
predicted class. In the confusion matrix, TP is the number
of true positive, TN is the number of true negative, FP is
the number of false positive, and FN is the number of
false negative (Taner; Öztekin; Duran, 2021).

Precision

Precision shows how much of the data predicted
as positive are predicted correctly. In other words, high
precision means fewer false positives.

Dataset Number images
Number of oocytes per image

Total oocytes
PV VI VF

Train 244 2.393 633 1.500 4.526
Validation 31 299 51 139 489
Test 30 374 98 193 665
Total 305 3.066 782 1.832 5.680

Table 1 - Database division

PV - pre-vitellogenesis, VI - early vitellogenesis, VF - late vitellogenesis
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Recall

The recall is the metric of determining the
completeness of the classifier. Higher recall indicates
lower false negatives, while lower recall indicates
higher false negatives. Precision often decreases with
an improvement in recall.

FNTP
TPcall
+

=Re                                                                                                                (2)

Mean Average Precision (mAP)

The Mean Average Precision (mAP) metric
is widely used to evaluate the performance of image
detection systems. To calculate the mAP (Equation 3), the
Precision and Recall for each class are initially obtained,
where the Average Precision (AP) is calculated as the area
under the precision-recall curve. The AP metric evaluates
the accuracy of the model at diff erent recall points,
capturing the model’s ability to correctly identify relevant
objects while minimizing false positives. The mAP is
then calculated as the average of the APs of all classes,
providing an overview of the system’s ability to deal with
multiple object categories (Everingham et al., 2015).
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Architectures adopted

YOLO is a method for object detection that is based
on the architecture of Convolutional Neural Networks.
It divides the image into a grid of cells and predicts
bounding boxes, confi dence intervals for these boxes
and the class probability for each cell, allowing a unique
assessment of the image (Redmon et al., 2016).

The detection architectures were used with the aim
of classify and localize the oocytes in images according
to their phases. YOLO versions 3, 4 and 5 were selected
for the experiments due to the fact that these architectures
have the ability to identify variations of objects of the
same class in diff erent dimensions (Golatkar; Anand;
Sethi, 2018; Redmon et al., 2016; Redmon; Farhadi, 2018).

In the YOLOv3 version, the models YOLOv3-tiny
and YOLOv3-ssp were applied (Redmon; Farhadi, 2018).
In the YOLOv4 version, the models YOLOv4-tiny and
YOLOv4-csp were applied (Bochkovskiy; Wang; Liao,
2020). In the YOLOv5 version, the models YOLOv5s,
YOLOv5m, YOLOv5n, YOLOv5l and YOLOv5x were
applied (Ultralytics, 2022). For the choice of these
models the high-performance characteristics in real-time
applications were considered, which according to Silva,
Narciso and Gonçalves (2019) stand out by the use of
independent logic classifiers for multiple classification
with class overlap. Luo et al. (2019) points out that these
versions present higher performance when dealing
with object of small sizes.

A common point of all YOLO object detection
architectures is that the resources of the input image
are compressed through a resource extractor called
the backbone and then forwarded to an object detector
(Detection Neck and Detection Head). Neck works as
a resource aggregator that has the task of mixing and
matching the resources formed in the backbone and
preparing them for the detection step to be carried out
by the Detection Head, responsible for carrying out the
detection, including the location and classifi cation of
objects (Redmon et al., 2016).

Table 2 - Composition of the YOLOv3, YOLOv4, and YOLOv5 architectures

Model Backbone Neck Head
YOLOv3

YOLOv3-tiny Tiny FPN
YOLO layer

YOLOv3-ssp Darknet53 FPN
YOLOv4

YOLOv4-tiny Tiny FPN
YOLO layer

YOLOv4-csp CSPDarket53 PANet
YOLOv5

YOLOv5l

CSPDarket53 with an SPPF Layer PANet YOLO layer
YOLOv5m
YOLOv5n
YOLOv5s
YOLOv5x
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To extract essential information from the input
image, the YOLOv3-tiny and YOLOv3-ssp models
use the Tiny and Darknet53 backbone respectively. In
the YOLOv4-tiny and YOLOv4-csp models, the Tiny
and CSPDarket53 backbones are used, respectively.
The YOLOv5l, YOLOv5m, YOLOv5n, YOLOv5s and
YOLOv5x models use a CSPDarket53 backbone plus a
Spatial Pyramid Pooling SPPF layer.

To increase the receptive fi eld and separate the
most important features, the YOLOv3-tiny, YOLOv3-ssp
and YOLOv4-tiny models use the Neck Filter Pyramid
Network (FPN). While the YOLOv4-csp, YOLOv5l,
YOLOv5m, YOLOv5n, YOLOv5s and YOLOv5x models
use the Neck Path Aggregation Network (PANet).

To perform the fi nal prediction, the YOLOv3-tiny,
YOLOv3-ssp, YOLOv4-tiny, YOLOv4-csp, YOLOv5l,
YOLOv5m, YOLOv5n, YOLOv5s and YOLOv5x models
use a YOLO layer to generate a vector containing the
bounding box coordinates: width, height, class label and
class probability. Table 2 summarizes the composition of
the YOLOv3, YOLOv4, and YOLOv5 architectures.

Environments for the Experiments

The models were trained for 300 epochs at the
most, as per the YOLO documentation and as observed
in correlated work (Abas; Abdulazeez; Zeebaree, 2022;
Ultralytics, 2023; Wang et al., 2020). Additionally, training
was interrupted at various times as no improvement was
observed after the maximum number epoch run. The
following hyperparameters were used in these models:
optimizer = SGD, lr0 = 0.01, lrf = 0.2, momentum =
0.937, weight_decay = 0.0005, warmup_epochs = 3.0,
warmup_momentum = 0.8, warmup_bias_lr = 0.1, box

= 0.05, cls = 0.5, cls_pw = 1.0, obj = 1.0, obj_pw = 1.0,
iou_t = 0.2, anchor_t = 4.0, fl_gamma = 0.0, hsv_h =
0.015, hsv_s = 0.7, hsv_v = 0.4, degrees = 0.0, translate
= 0.1, scale = 0.5, shear = 0.0, perspective = 0.0, flipud
= 0.0, fliplr = 0.5, mosaic = 1.0, mixup = 0.0.

The experiments were conducted using the free
Google Collaboratory platform (Colab), which is a cloud
storage service for laptops focused on creating and running
code in Python, directly in a browser (Bisong et al., 2019)
running on a Graphics Processing Unit (GPU). The hardware
confi gurations include a NVIDIA Tesla P100 tensor-core
graphics processing unit (GPU), 12GB of RAM and 68GB
of disk. Colab provides an environment confi gured with
Python 3, and the manual installation of the Keras, OpenCV,
TensorFlow, Matplotlib, NumPy and SciPy libraries.

RESULTS AND DISCUSSIONS

Model of training and testing

To locate the objects correctly, during the
training phase, the weights of the connections were
adjusted according to the patterns present in the images.
A comparison of weight values, training time, mean
mAP@.5 and inference time are presented in Table 3.
As a result, a model was generated containing trainable
and untrainable parameters, expressed in millions (M).
After training, the investigated models showed substantial
variations in weight generation. Regarding the number of
weights were generated for the models YOLOv5x 86 (M)
and YOLOv5n 7 (M). In terms of training time, the models
reached 5h 35min (longer time) for the YOLOv5x model
and 0h 37min (shortest time) for the YOLOv5n model.

Table 3 - Comparison of the Diff erent Detection Models

Model Model Weight (M) Training Time (h min) mAP@.5 (%) Inference Time (ms)
YOLOv3

YOLOv3-tiny 61 0 h 46 min 72.6 2.1
YOLOv3-ssp 62 4 h 19 min 71.8 2.2

YOLOv4
YOLOv4-tiny 68 4 h 25 min 72.3 1.2
YOLOv4-csp 72 3 h 16 min 74.8 1.6

YOLOv5
YOLOv5l 46 3 h 32 min 75.0 0.9
YOLOv5m 20 2 h 16 min 71.4 0.8
YOLOv5n 17 0 h 37 min 68.9 0.9
YOLOv5s 7 0 h 54 min 74.1 0.9
YOLOv5x 86 5 h 35 min 71.6 0.7
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Measure mAP@.5 allows validation of the
classifi cation with the assessment of the fi tness of the
bounding box to the detected object (Kubera et al., 2022).
The mean accuracy for 50% confi dence (mAP@.5) in the
detection of oocytes, of each model, was calculated in
relation to all stages of development (PV, VI and VF). The
values obtained for mAP@.5 showed little variation,
with 75% to 71.4%, however, for the YOLOv5n model
there was an average accuracy of 68.9%, considered
the lowest among all models.

In the test stage, the specialist should perform the
detection of oocytes in histological images quickly and
accurately, for which a model capable of automating the
visual process of identifying oocytes on a slide is applied.
This process is calculated considering the inference
time (expressed in milliseconds, ms) in the test images.
Thus, in this research, results were obtained that varied
in inference time between 2.1 ms for the YOLOv3-tiny
model and 0.7 ms for the YOLOv5x model.

Comparison of the Diff erent Detection Models

To verify the eff ectiveness of the architectures
proposed in this work, the models YOLOv3, YOLOv4, and
YOLOv5 were comparatively evaluated, considering the
metrics precision (P), recall (R) and measure AP (mAP) for
each class. All models were trained and tested using the same
dataset and environment in the experiments. In Table 4,
a comparison of the performance of the models is presented.

Nagahama and Yamashita (2008) point out that
early in oocyte development, the initial vitellogenesis
phase is essential for the fi nal quality of the oocyte, as
it is in this phase that there is a large accumulation of

substances that will be responsible for part of the yolk
production in the subsequent phases of oocyte development.

The models, for the most part, presented values
greater than 90% in the recall metric in the detection
of oocytes in phase VI. YOLOv5m reached 97.5% recall,
while YOLOv3-ssp reached the lowest value, only 89.1%.
The importance of precise identifi cation of this phase
is highlighted, as in this phase, the synthesis and
accumulation of the substance responsible for the survival
of embryos occurs Nagahama and Yamashita (2008).

The YOLO architecture uses two important elements
to detect an object: location (bounding box) and classifi cation.
Thus, when applying the mAP metric, a mechanism for
evaluating an object detected from an established threshold
is provided. In the case of oocyte detection, thresholds
between 50% and 95% are considered to assess the true
location and classifi cation of objects. Considering the
mAP@.5 metric, the YOLOv5l model presented the highest
detection rate with 95.7% for the VF phase and 78% and 90.2%
for the PV and VI phases, respectively. When increasing the
threshold to 95%, it was possible to observe that there was
a decrease in the results, however, the YOLOv5l model
remained with the highest rate, reaching 75.9% of detection.

It is possible to observe in Table 4, highlighted in
gray, that the class VF, in general, was the class in which
the models reached the highest rates to Recall, mAP@.5
and mAP@.95. This occurred because the classifi ers
handle better with oocytes that present, on average,
diameters of 388.3 μm (Mendonça, 2004). This confi rms that
objects with larger dimensions show more satisfactory results
in the detection task (Kubera et al., 2022; Wang et al., 2020).

Table 4 - Comparison of performance of models based on measurements of precision (P), recall (R) and AP average (mAP) for each class

PV - pre-vitellogenesis, VI - early vitellogenesis, VF - late vitellogenesis

Model
P (%) R (%) mAP@.5 (%) mAP@.95 (%)

PV VF VI PV VF VI PV VF VI PV VF VI
YOLOv3

YOLOv3-tiny 67.0 68.1 71.1 73.5 96.7 63.3 72.6 88.2 70.0 36.5 52.6 35.3
YOLOv3-ssp 85.0 78.8 77.2 74.7 89.1 77.6 80.5 90.8 82.8 48.4 59.3 57.2

YOLOv4
YOLOv4-tiny 69.9 70.7 74.9 51.0 96.9 62.2 56.6 89.7 70.6 16.3 55.8 40.1
YOLOv4-csp 79.7 76.0 79.5 55.1 92.2 75.5 65.2 90.7 81.9 24.9 62.3 56.4

YOLOv5
YOLOv5l 83.0 85.4 79.3 64.2 95.3 85.7 78.0 95.7 90.2 61.7 75.9 67.9
YOLOv5m 82.9 70.3 89.4 79.3 97.4 77.6 85.9 95.4 86.2 59.2 73.6 64.1
YOLOv5n 79.0 56.2 50.7 41.8 97.1 68.6 61.4 88.3 61.7 27.9 58.5 31.8
YOLOv5s 68.6 58.5 52.3 48.7 95.3 70.6 57.5 84.6 65.1 24.7 57.5 36.7
YOLOv5x 78.5 79.6 82.2 66.8 94.4 84.7 75.4 95.4 86.2 36.0 73.4 58.7
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It is also observed that the oocytes in the PV phase,
despite having a rounded shape and uniform staining, were
not the phase with the highest detection rates. However,
in phase VI, the external structure of the oocyte loses its
spherical shape, presenting heterogeneous color and its
internal structure contains tiny and whitish nucleoli. These
characteristics may be an indication that even class VI,
containing small sized oocytes, allows the models to
achieve more expressive results than with class PV.

The authors used slides processed in diff erent
ways, at diff erent times and under diff erent experimental
conditions. Thus, we sought to ensure that the collected
samples were as heterogeneous as possible, since,
due to the pioneering of this work, there are no image
databases that can signifi cantly increase the distribution
of this sample. Thus, the heterogeneity of the sample
aims to provide greater generalization and robustness
to the results obtained, allowing the developed model
to deal more eff ectively with unforeseen variability and
contribute signifi cantly to the advancement of the area.

The stages of development used play a fundamental
role in an investigation of the reproductive cycle of the

fi sh because, from the frequency of these in an image, it is
possible to distinguish the stages of maturation of a fi sh and
consequently identify its reproductive period. Araújo
and Chellappa (2002) state that knowledge of these
periods is indispensable for the rational management
of stocks, to be an element capable of establishing a
minimum size for the fish that be capture.

Thus, this research is the fi rst step towards creating
an automated system that can be used by domain experts in
the laboratory, through a web system or mobile application,
to identify fi sh germ cells. However, the various detection
methods have achieved diff erent results and deciding which
method is more reliable is not an easy task. Therefore,
Table 5 shows the models that obtained the best results
for each metrics used in the evaluations corresponding to
the respective classes. Finally, we highlight that the model
YOLOv5l achieved the best performance in this context.

Precision vs Recall Curve

The precision vs recall curve shows the
relationship between precision and the recall for
different thresholds generated from the test data. A

Table 5 - Models with better performance

PV - pre-vitellogenesis, VI - early vitellogenesis, VF - late vitellogenesis

Classes P R mAP@.5 mAP@.95
PV YOLOv3-ssp YOLOv5m YOLOv5m YOLOv5l
VF YOLOv5l YOLOv5m YOLOv5l YOLOv5l
VI YOLOv5m YOLOv5l YOLOv5l YOLOv5l

Figure 4 - The Precision vs Recall curve generated by the models
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high area under the curve represents high precision and
high recall, i.e., high precision is related to a low false
positive rate and high recall is related to a low false
negative rate (Ashraf et al., 2022). Figure 4 illustrates the
precision vs recall curves generated for each YOLO model.
The area under the curve was estimated with mAP@.5.
It also can be seen that the models YOLOv5l obtained
the highest area under the curve (0.880).

Result of the Detection Method

We present sample test set detections in Figure 5
presents two examples of the test dataset along with the
detection process results for the YOLOv5l model. The
red bounding box represents the PV phase, the orange
bounding box represents the VI phase and the light
pink bounding box represents the VF phase. For each
of these boxes, the percentage of Intersect over Union
(IoU) is generated, that is, how much this prediction
of the oocyte location coincides with its true location.

When comparing images, I and II, it is possible
to observe that both present equivalent results. In the
images, the VF phase obtained an IoU percentage
greater than 90%, while the PV phase ranged from 81 to 53%.
In relation to phase VI, only one oocyte was located
in image I with a percentage of 88%, in image II it
presented a greater number of unidentified oocytes
varying their percentage between 89 and 81%.

Despite the images showing oocytes in other phases,
the model could adequately locate the objects for which it
was trained with high precision. The overlap is also a factor
that makes object location diffi  cult, however, the model
satisfactorily detected the present oocytes in the images.

CONCLUSIONS

This paper described a method for detecting of
C. undecimalis oocytes from histological images using
the YOLO technique in versions 3, 4, and 5. For this,
a base of histological images was built containing 3
phases of oocyte development. The domain expert
labeled the set of images according to the respective
oocyte phase. From the results obtained it was possible
to conclude that the YOLOv5l model reached the best
performances in oocyte detection, when evaluated using
precision, recall and mAP@.5 and mAP@.95 metrics.
Considering these metrics, it was possible to observe
that the YOLOv5m model achieved 89.4% accuracy for
class VI. The YOLOv5m model also achieved 79.3%
of recall rate for the PV class and 97.4% for the VF
class. The YOLOv5m model achieved 85.9% mAP@.5
for the PV class. The YOLOv5l model achieved 85.4%
accuracy for the VF class, 95.7% mean mAP@.5
and 75.9% mean mAP@.95 for this same class. the
YOLOv5l model achieved 85.7%, 90.2%, and 67.9%
of recall, mAP@.5, and mAP@.95 respectively for
the VI class and 61.7% mean mAP@.95 for the PV
class. We observed that the number of oocytes is not
a relevant factor for the increase in the values of the
established metrics, but the size in which the oocytes
are found in the images. This fact evidences that the use
of an architecture that better adapts to objects of small
dimensions are necessary. The results of the research
are significant and confirm the effectiveness of the
proposed approach in identifying oocytes. For future
work, the domain expert will validate the results of the
proposed approach. The identification of the phases of

Figure 5 - Result of detection and location of oocytes using YOLOv5l model for each oocyte phase

Image 2Image 1Model

YOLOv5l
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the oocytes will allow estimating the fecundity rate of
this species, making it possible to control at a national
level the degradation of fish stocks, in places where
there is intense exploitation.
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