Vitamin B12 deficiency: metabolic effects, clinical evaluation, and treatment

Deficiência de vitamina B12: efeitos metabólicos, avaliação clínica e tratamento

1 Hospital Universitário Walter Cantídio (HUWC), Universidade Federal do Ceará (UFC), Fortaleza, Ceará, Brasil.

ABSTRACT

Vitamin B12 is a water-soluble essential micronutrient, required by all the body cells. Its deficiency has been implicated not only in hematological and neurological disorders, but also in many metabolic processes, such as insulin resistance and body composition changes, which have aroused particular interest in recent years. This study reviews the physiology of vitamin B12 from its digestion and absorption to its distribution in tissues, metabolic effects and controversies regarding the diagnosis of deficiency, and to dietary and pharmacological treatments.

RESUMO

A vitamina B12 é um micronutriente essencial solúvel em água, requerido por todas as células do corpo. Sua deficiência tem sido implicada não apenas em distúrbios hematológicos e neurológicos, mas também em muitos processos metabólicos, como resistência à insulina e alterações na composição corporal, que despertaram particular interesse nos últimos anos. Este estudo revisa a fisiologia da vitamina B12, desde sua digestão e absorção até sua distribuição nos tecidos, efeitos metabólicos e controvérsias quanto ao diagnóstico de deficiência, e tratamento dietético e farmacológico.

INTRODUCTION

Vitamin B12 is a water-soluble essential micronutrient required by all the body cells. It is also called cobalamin (Cbl) and it has two biologically active forms: methylcobalamin and adenosylcobalamin. Humans are unable to synthesize vitamin B12 and depend on their dietary intake to obtain it. In conventional diets, B12 is found in substantial amounts only in food sources of animal origin, such as dairy products, meat, fish and eggs, where the animals acquire the vitamin indirectly from synthesizing microorganisms. A prevalence of Cbl deficiency in various physiological conditions and stages of life has been reported in several parts of the world. In the United States, the status of Cbl was evaluated in the National Health and Nutrition Examination Survey (NHANES). There was a prevalence of low vitamin B12 levels in 2.9, 10.6 and 25.7% of the population when the cutoff points < 148, < 200 and < 256 pmol/L, respectively, were used. Other countries have shown higher prevalence for low levels of B12 (< 148 pmol/L) and marginal deficiency (148-221 pmol/L) in different age groups and physiological states (children, women of childbearing age, pregnant women, young adults and the elderly), particularly in South America, Africa and Asia. In general, the clinical deficiency of vitamin B12, with neurological or hematological symptoms is relatively uncommon. Subclinical status appears to be more frequent, particularly when there is a low consumption of animal food sources of Cbl. The consistency of the diagnosis of clinical and subclinical deficiency based on the markers involved has been discussed in the literature. Some authors suggest that the diagnosis seems to be more appropriate when there is a combination of four tests: where blood levels of B12, homocysteine (Hcy), methylmalonic acid (MMA) and holotranscobalamin (holo-TC) but not all studies use all the four tests.

The metabolic effects of deficiency of this micronutrient are also pertinent and research has shown that Cbl deficiency may also be related to the development of diseases such as diabetes and obesity. This article provides a general review on vitamin B12, from its ingestion, digestion and metabolism to clinical diagnosis and metabolic issues related to its deficiency. It also discusses about risk situations for Cbl deficiency and its treatment.

DIGESTION, ABSORPTION AND METABOLISM

After ingestion, in the stomach, vitamin B12 is dissociated from food protein by the action of hydrochloric acid and pepsin. The free form binds to a protein called haptocorrin (HC; formerly known as R-linker). This protein is degraded with a broad spectrum of effects including genetic, epigenetic and metabolic alterations. B12 deficiency also causes hyperhomocysteinemia, which can lead to cellular stress, apoptosis, and Hcy accumulation in the blood and tissues. It is reported in the literature that hyperhomocysteinemia increases the risk of cardiovascular diseases and this condition is known to occur with vitamin B12 deficiency, but also with folate and pyridoxine deficiency, and in patients with innate errors in enzymes associated with the metabolism of cysteine. Vitamin B12 deficiency impairs the metabolism of methylmalonyl-CoA and results in accumulation of methylmalonic acid, the effects of which are still unclear. In the methylmalonyl-CoA mutase pathway, the enzyme methylmalonyl-CoA hydrolase (MCH) catalyzes the hydrolysis reaction of methylmalonyl-CoA accumulated in MMA. MMA is a more specific marker for cobalamin deficiency, since it increases in the blood due to lack of this vitamin, but not in that of other B-complex vitamins.
signs of acute leukemia. Anemia is attributed to disturbances in erythropoiesis, which when ineffective result in intramedullary hemolysis and lactate dehydrogenase release, characteristics that are similar to those of microangiopathic hemolytic anemia. Neurological manifestations may present in various forms, such as peripheral neuropathy, which usually occurs as dormancy and paresthesia, ataxia, psychiatric disorders and cognitive deficit, which often predominate and may occur even without the presence of hematological complications. Serious deficiency may compromise the formation of the myelin sheath, impairing nerve transmission.

Clinical presentation of B12 deficiency

The body’s stores of vitamin B12 are relatively large (1 to 5 mg). Therefore, clinical manifestations due to reduction of ingestion or malabsorption may take several years to emerge. The clinical presentation of B12 deficiency consists mainly of hematological and neurological symptoms (Chart 2). The classic symptoms were identified for the first time in pernicious anemia, an autoimmune disease that causes destruction of the gastric mucosa and consequently affects the secretion of intrinsic factor.

Hematological signs and symptoms include megaloblastic anemia and macrocytosis, which may be associated with other manifestations as well. Dyssynchrony between cytoplasmic and core maturation leads to macrocytosis, immature nucleus, and hypersegmentation of granulocytes in peripheral blood. Dysplastic and hypercellular bone marrow can be mistaken for signs of acute leukemia. Anemia is attributed to disturbances in erythropoiesis, which when ineffective results in intramedullary hemolysis and lactate dehydrogenase release, characteristics that are similar to those of microangiopathic hemolytic anemia. Neurological manifestations may present in various forms, such as peripheral neuropathy, which usually occurs as dormancy and paresthesia, ataxia, psychiatric disorders and cognitive deficit, which often predominate and may occur even without the presence of haematological complications. Serious deficiency may compromise the formation of the myelin sheath, impairing nerve transmission. Genetic studies suggest that in vitamin B12 deficiency the main causes of neurological damage are the absence of methylcobalamin or methionine synthase. In addition, neurological complications can be caused by inflammation, oxidative stress and microvascular disease associated with hyperhomocysteinemia.

Chart 1. Evaluation of suspected vitamin B12 deficiency.

<table>
<thead>
<tr>
<th>Enzymatic reaction</th>
<th>Enzyme involved</th>
<th>Cofactor</th>
<th>Consequences of B12 deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocysteine methylation to give methionine</td>
<td>Methionine synthase</td>
<td>Methylcobalamin</td>
<td>- Increased homocysteine concentration; - Folate retained as methyltetrahydrofolate, leading to the reduction of tetrahydrofolate, which is used in the synthesis of thymidylate and purine; - Disorders in cellular proliferation and protein synthesis.</td>
</tr>
<tr>
<td>Conversion of methylmalonyl CoA to succinyl CoA</td>
<td>Methylmalonyl CoA mutase</td>
<td>Adenosylcobalamin</td>
<td>- Disturbances in oxidation of odd chain fatty acids, some amino acids, and propionate metabolism</td>
</tr>
</tbody>
</table>

to the patterns of children from the United Kingdom. The authors concluded that low maternal vitamin B12 and high folate levels might contribute to the elevated adiposity and insulin resistance in descendants.

Similarly, Stewart et al. (2011) demonstrated the association between maternal vitamin B12 deficiency and an increased risk of insulin resistance in the offspring. Children whose mothers had vitamin B12 deficiency (< 148 pmol/L) during gestation had an increase of 26.7% in HOMA-IR, with no association with maternal folate.28

Krishnaveni et al. (2013) observed that low concentrations of vitamin B12 (< 150 pmol/L) were also related to increased comorbidity in the pregnant women in an Indian population. Those with low vitamin B12 levels had higher BMI, higher percentage of fat, insulin resistance and higher incidence of gestational diabetes when compared to women with normal B12 values.29

In the United Kingdom, Knight et al. (2015) investigated serum levels of vitamin B12 and folate at the 28th week of gestation and its relationship with maternal adiposity and markers involved and suggested the body mass index (BMI) as an independent predictor of lower Cbl levels, since for every 1% increase in BMI, a 0.6% decrease in serum levels of vitamin B12 was observed. HOMA-IR, triglycerides and aspartate transaminase were also associated with Cbl levels independently.30

Solomon (2011) investigated diabetes mellitus as an outcome of functional deficiency of Cbl in a population of the elderly. Elderly subjects with diabetes and vitamin B12 levels above 400 pg/mL had higher methylmalonic acid levels than diabetics in a younger age group and elderly non-diabetic individuals, suggesting an effect of diabetes, besides the effect of aging, on the functional deficiency of Cbl.31

Wiebe; Field; Tonelli (2018) performed a systematic review with more than 7,000 participants to determine if Cbl levels were lower in individuals with a high BMI. The results showed an inverse relation between BMI and vitamin B12. The data showed lower levels of vitamin B12 in people with a higher BMI with a mean difference of 56 pmol/L (obesity versus control), 21 pmol/L (obesity versus overweight) and 51 pmol/L (overweight versus control).32 The study suggests that overweight people may require increased intake of the vitamin to support their serum concentrations, or that certain genotypes may be more susceptible to obesity and Cbl deficiency.

DIAGNOSIS OF VITAMIN B12 DEFICIENCY

The progression from normal to clinical deficiency of vitamin B12 passes through a phase of inadequacy, referred to as subclinical deficiency. This is associated with marginal levels of Cbl and is characterized by high MMA and Hcy values and reduced holo-TC values, which precede the emergence of more severe manifestations of the deficiency.33 The identification of more subtle degrees of Cbl deficiency is possible in clinical practice through assays for the metabolites involved.25,34
It is unclear whether individuals in subclinical deficiency will progress to an obvious deficiency or whether they will remain in a stable, but chronic, vitamin B12 latent state. Clinical symptoms of vitamin B12 deficit may be reproduced or mimicked by several other illnesses. Thus, the delay in diagnosis of the deficiency and inadequate clinical management in a patient with subclinical Cbl deficiency can be dangerous. A correct diagnosis of vitamin B12 deficiency is therefore very important. However, there is no accurate examination to identify vitamin B12 deficiency. The diagnosis is often based on the identification of low levels of vitamin B12 with clinical evidence of deficiency that responds to vitamin B12 replacement therapy. Thus, biomarkers involved in the metabolism of Cbl may be important in completing the diagnosis.

Serum levels of vitamin B12

The serum level of vitamin B12 is generally the screening test for diagnosis, but it has several limitations. One of the main disadvantages is that there is no cut-off point for vitamin B12 concentrations that is broadly accepted in order to define the deficiency. The literature has rather heterogeneous cut-off points; however, the most commonly used in serum or plasma are 148 pmol/L or 150 pmol/L. Another problem when comparing various trials and results from different laboratories, are the units used to report the serum levels of Cbl. Some report pmol/L and others in pg/ml (1 pmol/L = 1.35 pg/ml). Although it is the first step in the determination of Cbl deficiency, the predictive force of total vitamin serum concentration is insufficient for diagnosis. At or below 150 pmol/L, metabolites such as Hcy and serum or urinary MMA are generally elevated. However, this cutoff value seems to be very low and does not reflect an adequate level of vitamin B12 in the body. In addition, clinical manifestations of Cbl deficiency, such as neurological symptoms, may arise even if vitamin B12 is at a value above 150 pmol/L. According to Smith (2018) a series of unfavorable outcomes are attributed to a serum vitamin B12 dosage range above the traditional cut-off point of 150 pmol/L, making it difficult to diagnose deficiency in these cases. They are neural tube defect, infantile tremor syndrome, cognitive and motor development in childhood, cognitive deficit/decline in elderly, Alzheimer’s disease, white matter damage, impaired regional brain microstructure and memory impairment, whole-brain atrophy, depression, stroke, age-related macular degeneration, low bone mineral density, autonomic dysfunction, DNA damage in lymphocytes, uracil misincorporation into DNA. Therefore, the terms “B12 inadequacy” or “B12 insufficiency” in these cases has been proposed.

In addition, Hcy and MMA changes are known even when serum levels of vitamin B12 are just below 400 pmol/L. Therefore, a correlation between markers has been proposed in order to check the body status of Cbl more faithfully (B12, holo-TC, Hcy and MMA). The standard vitamin B12 analysis measures the total circulating vitamin in the serum, which includes its active fraction (holo-TC) and inactive forms (linked to plasma HC) and does not take into account the ratio between them. Eighty percent of circulating vitamin B12 is bound to HC and this can impact vitamin levels in the blood. Carmel et al. (2003) showed that 15% of low vitamin B12 cases might be associated with HC deficiency. Thus, a falsely low level of vitamin B12 may be associated with disorder in vitamin metabolism but may not be related to tissue deficiency. In addition to HC deficiency, low levels of Cbl may occur in individuals with folate deficit and multiple myeloma. False normal values of vitamin B12 may be present in hepatopathies, congenital TC II deficiency, myelo-proliferative disorder, and intestinal bacterial overgrowth. And high plasma (HC) concentrations may result in falsely elevated serum levels of vitamin B12.

Holotranscobalamin determinations

Holo-TC appears to be a marker that reflects the bioavailability of vitamin B12, since transcobalamin II immediately transfers the vitamin absorbed from terminal ileum cells to its targets. Although holo-TC measurement is gradually being incorporated into clinical practice, its diagnostic accuracy remains under discussion in the literature. It is believed that the test has similar sensitivity and specificity to vitamin B12 concentrations as compared to MMA elevations, which means that actual vitamin B12 deficiency may not be often recognized through this test. Thus, separately, vitamin B12 or holo-TC levels lower than the lowest reference range present reduced specificity for diagnosing Cbl deficiency. The laboratory cut-off points used for holo-TC vary between 11 and 41 pmol/L and their levels can be altered by the use of contraceptives, renal or hepatic disease, folate disorders, myelo-dysplasia, certain hematological disorders and alcoholism. Some more limitations to the use of holo-TC as an isolated marker to assess vitamin B12 status are the lack of clarification about its synthesis sites and its pharmacokinetics and limited use in research and clinical practice.

Homocysteine and methylmalonic acid levels

Plasma levels of Hcy and MMA are increased in vitamin B12 deficiency. However, while hyperhomocysteinemia occurs both in Cbl deficiency and in other B-complex vitamins, MMA is more specifically elevated in B12 deficiency. Although high levels of Hcy and MMA may assist in the identification of Cbl deficiency in individuals with normal vitamin B12 values, there are some limitations related to these metabolites. Levels of both Hcy and MMA may be elevated in senescence, renal failure, hypovolemia and in the case of hereditary metabolic defects. Some polymorphisms are responsible for marker elevation and this determinant may influence the utility of MMA when used as a single marker for diagnosis. Thus, using these metabolites alone as a parameter for Cbl deficiency may result in over diagnosis and over-treatment. The criteria for hyperhomocysteinemia are divergent in the literature. Studies recommend establishing limits for Hcy levels, considering the age and degree of fortification of food sources with folic acid. In communities where there is fortification, 12 μmol/L is recommended for individuals between 15 and 65 years and 16 μmol/L for the age group over 65 years. For communities without fortified foods, cut-off points are 15 μmol/L for individuals aged 15-65 years.
More than one biomarker should be used as a diagnostic strategy, as some laboratories do. Most of the time, serum levels of vitamin B12 are used as initial marker and levels of Hcy and MMA as secondary tests. In 2005, the European Food Safety Authority (EFSA) defined Cbl deficiency as vitamin B12 < 140 pmol/L, homocysteine > 15 μmol/L, MMA > 750 nmol/L and holo-TC < 21-45 pmol/L. Figure 2 shows an evaluation flowchart of suspected vitamin B12 deficiency.

Folate levels

Isolated folate deficiency is considered rare in the developed world. Their presence usually indicates an underlying disorder that causes reduction or malabsorption of multiple nutrients. As folate and Cbl share intrinsically linked metabolic pathways, clinical manifestations may be quite similar or even indistinguishable. Therefore, it is recommended that its dosage be requested in clinical situations similar to those observed in vitamin B12 deficiency. Folate deficiency is indicated with a serum level < 7 nmol/L (3 ng/ml).

Figure 2. Evaluation of suspected vitamin B12 deficiency.

Legend: *alcohol abuse, gastric bypass surgery, histamine H2 blocker use for more than 12 months, inflammatory bowel disease, megaloblastic anemia, metformin use for more than four months, neurologic symptoms, proton pump inhibitor use for more than 12 months, vegetarian or vegan diets. **MMA: methylmalonic acid; tHcy: total homocysteine; HoloTC: holotranscobalamin.

SUPPLEMENTATION AND FOOD FORTIFICATION

Cyanocobalamin is the most widely used form in the formulation of supplements because of its high stability, cost-effectiveness and safety of use.62 In addition, it is the only compatible form for food fortification due to its stability when heated.63 As the crystalline form of Cbl is not bound to dietary proteins, bioavailability in supplements is high when compared to that of food.64 Currently, the highest Tolerable Upper Intake Level (UL) of Cbl in food or supplements has not been defined because the literature data are insufficient to determine toxicity events. Excessive accumulation or absorption is unlikely, since B12 is a water-soluble molecule and requires a specific transport system that is easily saturated.65,66

The absorption of vitamin B12 from supplements depends on the dose and frequency of consumption.67 The absorption capacity depends on the transport and the efficiency of the specific route. According to Carmel (2008), oral doses of 1 μg, 10 μg, 50 μg, 500 μg, 1000 μg are absorbed with an efficiency of 56%, 16%, 3%, 2% and 1.3%, respectively.68 Data from NHANES (2003-2006) indicate that the consumption of Cbl-enriched foods and supplements improved the B12 status of the American population.69 The use of foods widely available as vehicles to provide vitamin B12 is a preventive strategy. In addition, the fortification of food such as wheat flour, bread, milk, cereals, energy drinks and mineral water has been used successfully in some countries.70,71 Several intervention studies have found improvements in biomarkers of vitamin B12 status with Cbl supplementation. Deshmukh et al. (2010) studied the effect of physiological doses of vitamin B12 on the plasma concentration of homocysteine in an Indian population.72 After 12 months of supplementation, the Hcy concentration decreased by 13 and 35% at doses of 2 and 10 μg/day, respectively, and was considered an important community intervention.

In New Zealand, cyanocobalamin (6 μg/day) supplementation was associated with improvements in serum vitamin B12 and holo-TC in a group of women.73 A combined supplementation of vitamin B12 (10 μg/day) and proteins in a balanced diet increased the homocysteine remethylation rate at the end of pregnancy.74 The significant effect of low doses may be related to the high prevalence of vitamin deficiency in the populations studied.1075,76 In 100 elderly patients with serum vitamin B12 < 250 pmol/L, supplementation of 10 μg/d, 100 μg/day or 500 μg/day of cyanocobalamin for 8 weeks improved plasma vitamin B12 and MMA, urinary MMA and serum holo-TC. Improvements in plasma vitamin B12 and serum holo-TC were achieved at low doses of 10 μg/day.77 Eussen et al. (2005) evaluated the effect of daily oral doses of 2.5, 100, 250, 500 and 1000 μg of cyanocobalamin administered for 16 weeks in 120 people.78 These doses were associated with mean reductions in plasma MMA concentrations of 16%, 16%, 23%, 33% and 33%, respectively. Doses of 647 to 1032 μg were associated with 80% to 90% of the estimated maximum reduction in plasma concentration of the marker. The lowest dose of oral vitamin B12 required to normalize the deficiency was more than 200 times higher than that recommended by the diet. The remarkable improvement in biomarkers of vitamin B12 deficiency with the supplementation of low Cbl doses deserves discussion. The duration of supplementation is also an important determinant of the effect; small doses over a long period of time may be as effective as a large dose over a short period of time.68 Although there are improvements in the markers with dietary supplementation, correction of the deficiency seems only possible with pharmacological doses.

PHARMACOLOGICAL TREATMENT OF VITAMIN B12 DEFICIENCY

Fortunately, Cbl deficiency can be corrected by replenishing that nutrient. But immediate diagnosis and treatment is needed to avoid further harm.38 A consistent clinical suspicion of deficiency may endorse the instantaneous treatment with vitamin B12.39 Treatment with high doses of vitamin B12, pending the results of more specific tests, does not appear to cause damage.4 Establishing a cause for deficiency is critical to proper management. For this, one must determine whether the cause is poor ingestion or poor absorption, and when it is the latter, if the defect is in the stomach or intestine.4 In cases of malabsorption, intramuscular injection (IM) of 1000 μg of cyanocobalamin or hydroxocobalamin may be given daily or on alternate days for one or two weeks, followed by weekly administrations for one month and thereafter reduced to once per month indefinitely.4 Oral administration may also be administered with high dose (2000 μg) of cyanocobalamin or hydroxocobalamin until remission, then 1000 to 2000 μg/day. In the case of dietary deficiency, a high daily dose should be considered to replace the reserves over 3 to 4 months, and then at least 6 μg/day. In infants, administration with 250 to 1000 μg of cyanocobalamin or hydroxocobalamin via IM is recommended daily, after, weekly, until recovery, followed by 1 to 2 μg/day orally or use of B12-containing formulas. In addition, it is recommended that the mother be treated if she is deficient to improve availability of B12 in breast milk.3 In subjects showing haematological and neurological symptoms with cobalamin deficiency, high doses of oral vitamin B12 (at the beginning 1000 μg/day, followed by weekly or monthly doses of 2000 μg/day) appear to be as effective as when administered IM.79 There is evidence of adequate biochemical, hematological and clinical responses in a short period with oral replacement of vitamin B12 even in patients with a history of malabsorption.79 This is very valuable, since IM administration is much more expensive and painful, besides not being free of complications.80 Sublingual administration of Cbl has been reported to be effective by Parry-Strong et al. (2016).81

CONCLUSION

Vitamin B12 deficiency causes serious health problems, with various neurological and hematological symptoms. In addition to these clinical manifestations, metabolic changes related to the onset of obesity and diabetes in people with Cbl deficiency have been demonstrated. So far, there is no accurate examination to identify this deficiency. Currently the diagnosis is based mainly on low levels of vitamin B12, however,
several studies have shown that the predictive strength of this marker is insufficient for diagnosis. A combination of four biomarkers (Cbl, homocysteine, methylmalonic acid and holo-TC) has been proposed for a more reliable diagnosis. Nutritional supplementation and food fortification have been used to improve the vitamin B12 status of certain populations.

Although there are improvements in markers with these features, correction of deficiency appears to be possible only with pharmacological doses. The pharmacological treatment of Cbl deficiency occurs with high doses of the vitamin through different routes of administration, in which the most used are the oral or intramuscular route.

REFERÊNCIAS

48 Vitamin B12 deficiency

62. Obeid R, Fedosov SN, Nexo E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol Nutr Food Res. 2015;59(7):1364-72.

64. Institute of Medicine. A report of the standing committee on the scientific evaluation of dietary reference intakes and Its panel on folate, other B vitamins, and choline and Subcommittee on upper reference levels of nutrients, food and nutrition board. Washington: National Academy; 1998.

How to cite: