

Factors associated with health literacy of post-stroke patients undergoing outpatient follow-up

Fatores associados ao letramento em saúde de pacientes pós-acidente vascular encefálico em acompanhamento ambulatorial

How to cite this article:

Maniva SJCF, Benedito CG, Chagas ALB, Santiago JCS, Almeida PC, Campos RKGG. Factors associated with health literacy of post-stroke patients undergoing outpatient follow-up. Rev Rene. 2025;26:e95519. DOI: <https://doi.org/10.36517/2175-6783.20252695519>

✉ Samia Jardelle Costa de Freitas Maniva¹
✉ Caroline Gomes Benedito¹
✉ André Luiz Bezerra Chagas¹
✉ Jênia Cavalcante dos Santos Santiago¹
✉ Paulo César de Almeida²
✉ Regina Kelly Guimarães Gomes Campos³

ABSTRACT

Objective: to assess the prevalence of factors associated with health literacy in patients suffering from stroke with outpatient follow-up. **Methods:** a cross-sectional study, carried out with 44 patients. A sociodemographic and clinical characterization form was used, in addition to the Mini Mental State Examination and the Test of Functional Health Literacy in Adults - Short version (S-TOFHLA). For the analysis, Chi-square test and Spearman's correlation coefficient were applied. **Results:** individuals aged 46 to 59 years ($p=0.044$), with high school or higher education ($p=0.036$) and who did not use warfarin ($p=0.028$) presented adequate literacy. A significant correlation was identified between age and S-TOFHLA reading comprehension ($r= -0.537$; $p<0.001$) and age and S-TOFHLA overall results ($r= -0.497$; $p<0.001$). A correlation was found between cognitive assessment and reading comprehension ($r=0.528$; $p<0.001$) and S-TOFHLA total score ($r=0.517$; $p<0.001$). **Conclusion:** health literacy was related to the age group of 46 to 59 years, higher education, better cognitive performance and not using warfarin. **Contributions to practice:** knowing stroke patients' health literacy can support significant changes in nursing practice, especially in the context of outpatient care and rehabilitation. **Descriptors:** Stroke; Health Literacy; Ambulatory Care; Health Promotion; Nursing.

RESUMO

Objetivo: avaliar a prevalência de fatores associados ao letramento em saúde em pacientes acometidos por acidente vascular encefálico com acompanhamento ambulatorial. **Métodos:** estudo transversal, realizado com 44 pacientes. Foi utilizado um formulário de caracterização sociodemográfica e clínica, além do Mini Exame do Estado Mental e do *Test of Functional Health Literacy in Adults - Short version* (S-TOFHLA). Para a análise, foram aplicados o teste Qui-quadrado e o coeficiente de correlação de Spearman. **Resultados:** apresentaram letramento adequado os indivíduos de 46 a 59 anos ($p=0,044$), com ensino médio ou superior ($p=0,036$) e que não faziam uso de varfarina ($p=0,028$). Identificou-se correlação significativa entre idade e compreensão leitora do S-TOFHLA ($r= -0,537$; $p<0,001$) e idade e resultados globais do S-TOFHLA ($r= -0,497$; $p<0,001$). Verificou-se correlação entre avaliação cognitiva e compreensão leitora ($r=0,528$; $p<0,001$) e pontuação total da S-TOFHLA ($r=0,517$; $p<0,001$). **Conclusão:** o letramento em saúde relacionou-se à faixa etária de 46 a 59 anos, à maior escolaridade, ao melhor desempenho cognitivo e à não utilização da varfarina. **Contribuições para a prática:** conhecer o letramento em saúde dos pacientes com acidente vascular encefálico pode subsidiar mudanças significativas na prática de enfermagem, especialmente no contexto da atenção ambulatorial e da reabilitação.

Descriptores: Acidente Vascular Encefálico; Letramento em Saúde; Assistência Ambulatorial; Promoção da Saúde; Enfermagem.

¹Universidade Federal do Ceará.

Fortaleza, CE, Brazil.

²Universidade Estadual do Ceará.

Fortaleza, CE, Brazil.

³Instituto Centro de Ensino Tecnológico.

Fortaleza, CE, Brazil.

Corresponding author:

Samia Jardelle Costa de Freitas Maniva
Rua Alexandre Baraúna, 1115 - Rodolfo Teófilo.
CEP: 60430-160. Fortaleza, CE, Brazil.
E-mail: samia.jardelle@ufc.br

Conflict of interest: the authors have declared that there is no conflict of interest.

EDITOR IN CHIEF: Ana Fatima Carvalho Fernandes

ASSOCIATE EDITOR: Jéssica de Castro Santos

Introduction

Stroke is a neurological condition responsible for high mortality and disability. More than 80 million people have been affected by this disease globally, of which around 185 thousand cases represent recurrent events⁽¹⁾. The condition predominantly affects middle-aged and older adults⁽²⁾.

The risk of stroke recurrence is related to the control of chronic conditions such as high blood pressure and diabetes mellitus, and the presence of risk factors such as cardiac arrhythmias, smoking, alcoholism, inadequate lifestyle habits and low adherence to drug treatment⁽³⁾. These factors, in turn, are directly influenced by patients' ability to understand, process and apply the guidance provided by healthcare professionals⁽⁴⁾.

In this context, health self-management after stroke requires that patients develop skills to understand their health condition, make informed decisions, communicate effectively, and actively participate in care. Such skills are related to the level of health literacy.

Health literacy is defined as the set of skills that enable an individual to seek, interpret, critically judge and apply health-related knowledge, with the aim of adopting behaviors that positively influence their own health condition or that of others⁽⁵⁾. Although the expression originates from the English term health literacy, different translations are used in Brazil, such as *alfabetização, literacia* and *letramento em saúde*, the latter being the most common in national scientific literature⁽⁶⁾.

Inadequate levels of health literacy are associated with lower adherence to treatment and increased risk of stroke recurrence⁽⁷⁾. Given the complexity of post-stroke care, which includes activities such as reading prescriptions and leaflets, calculating medication doses, understanding multidisciplinary guidelines and communication in healthcare services⁽⁸⁾, it becomes essential to understand the role of health literacy in the care experience of these patients, aiming to promote autonomy and improve clinical outcomes.

This study aimed to assess the prevalence of factors associated with health literacy in patients suffering from stroke with outpatient follow-up.

Methods

Study design and period

This is a cross-sectional study developed according to the EQUATOR network guidelines, using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. Data collection was carried out between November 2023 and April 2024, with patients affected by stroke in an outpatient unit specialized in neurological conditions, linked to a highly complex hospital service of the public health network in the city of Fortaleza, Ceará, Brazil. The outpatient unit offers care in several areas including stroke, epilepsy, demyelinating diseases, movement disorders and neuromuscular diseases. Stroke patient care occurs weekly, in the afternoon shift, under the responsibility of a care team composed of professionals from different health categories.

Population and sample; inclusion and exclusion criteria

The study population consisted of 180 patients diagnosed with stroke undergoing outpatient follow-up during data collection. Sampling was by convenience, consecutively, according to the following inclusion criteria: confirmed diagnosis of stroke; being literate; being 18 years of age or older; and cognitive preservation verified through the Mini Mental State Examination (MMSE), with a score equal to or greater than 24 points⁽⁹⁾. Exclusion criteria were limitations in communication or visual impairment that made it impossible to properly apply the data collection instruments.

It was decided not to apply statistical sample calculation, but to include all eligible participants present during the collection period, in line with a similar protocol⁽⁷⁾. However, the final sample consisted of 44

patients, due to logistical issues such as non-attendance at the outpatient clinic, refusal to participate and failure to meet the inclusion criteria.

Study protocol

For data collection, a form with sociodemographic and clinical information was used, namely sex, age, education, income, marital status, origin, self-reported chronic diseases, types of medications in use and lifestyle habits. To assess cognitive function, the MMSE was used and to measure health literacy, and to measure health literacy, the Test of Functional Health Literacy in Adults – Short version (S-TOFHLA) was applied in the Portuguese version.

The MMSE is the most widely used cognitive screening instrument internationally, consisting of seven domains that investigate cognitive functions, such as orientation to time, orientation to place, registration of three words, attention and calculation, recall of three words, language, and visual construction. The score ranges from 0 to 30 points, with results below 24 indicating possible cognitive impairment⁽⁹⁾.

The S-TOFHLA is an instrument used to measure individuals' ability to interpret information and instructions related to the context of healthcare. It consists of two parts, such as reading comprehension (36 items, with a score of 2 points for each correct answer, totaling up to 72 points) and numerical comprehension (4 items, with a score of 7 points for each correct answer, totaling up to 28 points), resulting in a maximum score of 100 points. Performance is stratified into three categories of health literacy: inadequate (0 to 53 points); borderline (54 to 66 points); and adequate (67 to 100 points)⁽¹⁰⁾.

Participants were invited to take part in the study while they were waiting for care at the outpatient clinic and were informed about the study objectives. Subsequently, a form containing questions on sociodemographic and clinical characteristics was applied, as well as the MMSE, using the structured interview technique, which lasted an average of 15 minutes. Subsequently, each patient received

the printed S-TOFHLA to read and choose the most appropriate alternative in items related to reading comprehension and write the correct answer in the numeracy questions. The time to answer this test was 15 minutes.

Data analysis and treatment

Data were processed using SPSS 20.0, license number 101011131007. Results were organized into tables with absolute and percentage frequencies. The Chi-square test was applied to analyze the association between the S-TOFHLA classification (adequate and inadequate/borderline) and sociodemographic and clinical variables. The linear correlation between total S-TOFHLA, reading comprehension and numeracy with age and MMSE was performed using Spearman's r coefficient. Analyses with $p < 0.05$ were considered statistically significant.

Ethical aspects

The guidelines established in Resolution 466/12, which regulates research involving human beings, were followed. The study was approved by the *Hospital Geral de Fortaleza* Research Ethics Committee and obtained Opinion 6,738,693/2024 and Certificate of Presentation of Ethical Consideration 70121323.3.3001.5040.

Results

It was evident that 65% were men; 47.5% were in the age group of 46-59 years; 52.5% had completed high school; 62.5% had no partner; 70% earned a minimum wage; and 75% were from the city of Fortaleza-Ceará. The overall S-TOFHLA mean was 74.3 ± 23.3 (ranging from 0 to 100 points), classified as adequate health literacy. Among patients, 65.9% presented adequate literacy and 34.1% inadequate/borderline. The means of reading comprehension and numerical dimension were 55.6 ± 18.6 and 20.2 ± 11.1 , respectively.

It was observed that adequate literacy was statistically associated with the age group of 46 to 59 years ($p=0.044$) and having completed high school or higher education ($p=0.036$). No significant association was identified between adequate and inadequate/borderline literacy and sex, marital status, income, and origin (Table 1).

Table 1 – Association between sociodemographic characteristics and health literacy classification of post-stroke patients. Fortaleza, CE, Brazil, 2025

Variables	Total	Adequate	Inadequate/ borderline	p-value*
	n (%)	n (%)	n (%)	
Sex				0.930
Male	26(59.1)	17(65.4)	9(34.6)	
Female	18(40.9)	12(66.7)	6(35.3)	
Age range (years)				0.044 [†]
21 - 45	12(27.3)	9(75.0)	3 (25.0)	
46 - 59	19(43.2)	15(78.9)	4(21.1)	
60 - 88	13(29.5)	5(38.5)	8(61.5)	
Education				0.036 [†]
Elementary school	16(36.4)	8(50.0)	8(50.0)	
High school	21(47.7)	14(66.7)	7(33.3)	
Higher education	7(15.9)	7(100.0)	0(0.0)	
Income (minimum wage)				0.062
1	28(63.4)	18(64.3)	10(35.7)	
2 to 4	14(36.6)	9(64.3)	5(35.7)	
Marital status				0.328
No partner	25(56.8)	18(72.0)	7(28.0)	
With partner	19(43.2)	11(57.9)	8(33.3)	
Origin				0.877
Fortaleza	30(68.2)	20(66.7)	10(33.3)	
Inland	14(31.8)	9(64.3)	5(35.4)	

*Pearson's Chi-square test; [†]Significant for $p<0.05$

A moderate and statistically significant negative correlation was identified between age and reading comprehension ($r= -0.537$; $p<0.001$), which indicates that as age increases, patients' performance in understanding health-related texts decreases. The same trend was observed in the correlation between the overall S-TOFHLA results and age ($r= -0.497$; $p<0.001$), indicating that older individuals had lower health literacy. On the other hand, the correlation between age and numeracy was negative, weak and without statistical significance ($r= -0.247$; $p=0.109$), suggesting that

age did not significantly influence individuals' ability to interpret and use health-related numerical information.

Concerning cognitive assessment, patients presented a mean MMSE score of 26.8 ± 2.0 . The correlation between MMSE and reading comprehension ($r=0.528$; $p<0.001$) and total S-TOFHLA score ($r=0.517$; $p<0.001$) indicated that better levels of cognitive function are associated with greater health literacy. The correlation between MMSE and numeracy was weak ($r=0.267$) and not statistically significant ($p=0.790$), showing that this dimension may not depend directly on overall cognition (Table 2).

Table 2 – Correlation between dimensions and total score of S-TOFHLA with age and Mini Mental State Examination of post-stroke patients. Fortaleza, CE, Brazil, 2025

Variables	Dimensions					
	Reading comprehension		Numeracy		Total	
	r*	p-value [†]	r	p-value	r	p-value
Age	-0.537	<0.001	-0.247	0.109	-0.497	<0.001
MMSE	0.528	<0.001	0.267	0.790	0.517	<0.001

*R is the Spearman coefficient; [†]Spearman coefficient; S-TOFHLA - Test of Functional Health Literacy in Adults - Short version; MMSE - Mini Mental State Examination

Regarding self-reported diseases, medication use and lifestyle habits, hypertension was the most frequent condition (97.7%). Most patients did not consume alcohol (79.6%), did not smoke (95.5%) and reported practicing physical activity (65.9%). A statistically significant association was found between warfarin use and health literacy ($p=0.028$). Patients using this anticoagulant presented a higher frequency of inadequate/borderline classification (57.1%) compared to those who did not use it (23.3%). No statistically significant association was identified between health literacy and other chronic diseases and lifestyle habits. However, it was found that the occurrence of not smoking, not using alcohol and practicing physical activity was higher in patients with adequate literacy (Table 3).

Table 3 – Association between self-reported chronic diseases, warfarin use and lifestyle habits with the health literacy classification of post-stroke patients. Fortaleza, CE, Brazil, 2025

Variables	Total	Adequate	Inadequate/ borderline	p-value*
	n (%)	n (%)	n (%)	
High blood pressure				0.226
Yes	43(97.7)	28(65.1)	15(34.9)	
No	1(2.3)	1(100.0)	0(0.0)	
Diabetes mellitus				0.467
Yes	30(68.1)	18(60.0)	12(40.0)	
No	14(31.9)	11(78.6)	3(21.4)	
Physical activity				0.455
Yes	29(65.9)	18(62.1)	11(37.9)	
No	15(34.1)	11(73.3)	4(28.7)	
Warfarin use				0.028 [†]
Yes	14(31.8)	6(42.9)	8(57.1)	
No	30(68.2)	23(76.7)	7(23.3)	
Cardiac arrhythmia				0.420
Yes	10(22.7)	6(60.0)	4(40.0)	
No	34(77.3)	8(23.5)	26(66.7)	
Alcoholism				0.400
Yes	9(20.4)	7(77.8)	2(22.2)	
No	34(79.6)	22(62.9)	13(37.1)	
Smoking				0.298
Yes	2(4.5)	2(100.0)	0(0.0)	
No	42(95.5)	27(64.3)	15(35.7)	

*Pearson's Chi-square test; [†]Significant for p<0.05

Discussion

Understanding the health literacy of people affected by stroke is a priority, given the impact of this condition on public health⁽¹⁾ and the need for ongoing healthcare focused on prevention, recovery, and rehabilitation. Assessing health literacy allows health education interventions to be planned in a manner consistent with patients' ability to seek, interpret, and apply information related to their health condition⁽¹¹⁾. Health literacy goes beyond reading labels and information leaflets. It is a resource that allows individuals to acquire health-related information, helping to promote autonomy and self-care⁽¹²⁾.

A higher prevalence of adequate literacy was

identified among participants, a result that differs from the findings of several national studies with other populations, such as hypertensive individuals⁽¹³⁻¹⁴⁾, diabetic individuals⁽¹²⁾, adults⁽¹⁰⁾, and older adults⁽¹⁵⁾, in which inadequate health literacy predominated. This result may have been influenced by the time taken to administer the S-TOFHLA in this study (15 minutes), which was longer than the time used in other studies^(10,16) that used seven to 10 minutes. Another aspect that may have influenced this was the high level of education⁽¹⁶⁾, with more than half of the patients having completed high school, differing from the studies cited, whose participants had mostly completed elementary school.

The relationship between education and health literacy is widely described, especially when assessed by instruments such as the S-TOFHLA that require reading and numeracy skills⁽¹⁷⁾. It is important to emphasize that it is extremely important to develop studies to gain a detailed understanding of health literacy in stroke patients from other dimensions and that include individuals with low levels of education or functional illiteracy as well as those with mild cognitive deficits. Given the high prevalence of stroke in people with low levels of education⁽¹⁸⁾ and the possibility of post-stroke cognitive impairment⁽⁷⁾, this may help to strengthen neuroprotective behaviors to prevent disease recurrence⁽⁹⁾.

Adequate literacy was identified in 62 to 68.7% of post-stroke patients, a percentage close to that found in this study. This data may reflect the exposure of patients to information during hospitalization and outpatient follow-up, which favored the construction of knowledge about their own health condition^(7,19). However, it is essential that healthcare services pay attention to both patients with lower levels of education and those with higher levels of education, as both may have difficulties in health literacy, requiring personalized educational approaches⁽²⁰⁾.

A significant association was observed between adequate health literacy, age range of 46 to 59 years and secondary or higher education, corroborating

previous findings^(10,20). Lower health literacy in older individuals may be attributed to age-related cognitive changes, such as decreased working memory and processing speed, which impact the understanding of health information⁽²¹⁻²²⁾. It is recommended that educational interventions aimed at this population consider these changes and use more frequent, accessible and interactive strategies⁽⁷⁾.

An association was found between cognitive function and health literacy, which revealed significant correlations between the MMSE and reading comprehension and the total S-TOFHLA score, indicating that better cognitive levels are associated with greater health literacy. These results confirm data from previous studies that demonstrated a correlation between cognitive performance and health literacy^(4,23). Between MMSE and numeracy, correlation was weak and not significant, suggesting that this ability may depend on factors other than overall cognition, such as previous experience with mathematical calculations or specific logical reasoning skills⁽²⁴⁾.

Although there was no statistically significant association between health literacy and lifestyle habits, it was observed that patients with better habits, such as not smoking, not consuming alcohol and practicing physical activity, presented higher levels of health literacy. These behaviors may be related to greater acceptance of health information by individuals with higher education and greater ability to interpret information⁽⁷⁾. These results are relevant in preventing stroke recurrence, which is estimated at 26% after five years of the first event⁽²⁵⁾ and in the need for adherence to multiple secondary prevention strategies, including adequate use of medications, cessation of smoking and alcoholism and physical activity⁽²⁶⁾.

Among the self-reported chronic diseases, high blood pressure was the most cited by patients. Considering that high blood pressure is a major risk factor for stroke⁽²⁷⁾, the strategic role of health literacy in self-care and effective blood pressure control is highlighted. In this context, nursing care focused on

health education, monitoring therapeutic adherence and identifying cognitive or comprehension difficulties are essential⁽¹³⁾.

A significant association was found between inadequate/borderline literacy and warfarin use. This medication, although widely used due to its low cost⁽²⁸⁾, requires strict monitoring due to pharmacokinetic variability, interactions with food and other drugs, and the need to monitor the International Normalized Ratio. Individuals with inadequate health literacy have a higher risk of nonadherence, hemorrhagic or thromboembolic complications⁽²⁹⁾. This highlights the relevance of specific educational interventions for patients on anticoagulation, which are adjusted to their understanding capacity and sociocultural context. In patients with ischemic stroke, the main indication for warfarin is atrial fibrillation, a cardiac arrhythmia responsible for 30% of cases of ischemic stroke, especially in older adults⁽³⁰⁾.

Therefore, health literacy needs to be considered as a determining factor in stroke patients' health condition, directly influencing clinical outcomes⁽¹²⁾. Educational strategies, especially conducted by the nursing team, must be adapted to the level of health literacy, incorporating visual resources, simple language, verbal reinforcement and caregiver involvement⁽¹⁴⁾. A multidisciplinary and patient-centered approach is essential to ensure the effectiveness of care actions and prevention of recurrence⁽⁷⁾.

Study limitations

A study limitation was the measurement of health literacy only in the functional dimension. It is recognized that health literacy is a dynamic and multi-factorial construct, which involves interactive, critical and organizational aspects. Therefore, it is suggested that subsequent studies consider other dimensions of health literacy for a detailed understanding of the literacy level of post-stroke patients.

Contributions to practice

The results of this study showed that health literacy was related to educational level, age and cognitive level, highlighting the need for continuous, accessible and multimodal educational strategies aimed at stroke patients and their caregivers. Such strategies should include both individuals with low educational levels and those with higher educational levels, since limitations in health literacy can occur in both groups.

It is believed that understanding stroke patients' health literacy can support significant changes in nursing practice, especially in the context of outpatient care and rehabilitation. Incorporating health literacy assessment into the routines of services aimed at this target audience can contribute to the development of more effective educational actions focused on patients' needs, strengthening nursing actions in health promotion, longitudinal monitoring, and qualified care.

Conclusion

Health literacy was related to the age group of 46 to 59 years, higher education level, better cognitive performance and non-use of warfarin. The results indicate that health literacy can influence the outpatient follow-up of post-stroke patients, since higher levels of health literacy were related to better self-care practices and control of risk factors.

Authors' contributions

Data conception and design or analysis and interpretation; Manuscript writing or relevant critical review of intellectual content: Maniva SJCF, Benedito CG, Chagas ALB, Santiago JCS, Almeida PC, Campos RKGG. Final approval of the version to be published and agreement to be responsible for all aspects related to the accuracy or integrity of any part of the manuscript being appropriately investigated and resolved: Maniva SJCF.

References

1. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. *Lancet Neurol.* 2021;20(10):795-820. doi: [https://dx.doi.org/10.1016/S1474-4422\(21\)00252-0](https://dx.doi.org/10.1016/S1474-4422(21)00252-0)
2. World Health Organization. World health statistics 2021: monitoring health for the SDGs, sustainable development goals [Internet]. 2021 [cited Apr 28, 2025]. Available from: <https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf>
3. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. *Stroke.* 2021; 52(7):e364-e467. doi: <https://doi.org/10.1161/STR.0000000000000375>
4. Kanejima Y, Shimogai T, Kitamura M, Ishihara K, Izawa KP, et al. Impact of health literacy in patients with cardiovascular diseases: a systematic review and meta-analysis. *Patient Educ Couns.* 2022;105(7):1793-800. doi: <https://doi.org/10.1016/j.pec.2021.11.021>
5. Connell L, Finn Y, Sixsmith J. Health literacy education programmes developed for qualified health professionals: a scoping review. *BMJ Open.* 2023;13:e070734. doi: <https://doi.org/10.1136/bmjopen-2022-070734>
6. Peres F. Alfabetização, letramento ou literacia em saúde? Traduzindo e aplicando o conceito de health literacy no Brasil. *Ciênc Saúde Colet.* 2023;28(5):1563-73. doi: <https://dx.doi.org/10.1590/1413-81232023285.14562022>
7. Ouyang W, Wang R, HE Y, Song Y, Mo L, Feng L, et al. Status and influential factors of health literacy in patients with ischemic stroke: a cross-sectional study. *PLoS One.* 2024;19(7):e0307928. doi: <https://doi.org/10.1371/journal.pone.0307928>
8. Magagnin AB, Heidemann ITSB, Brum CN. Transition of care for stroke patients: an integrative review. *Rev Rene.* 2022;23:e80560. doi: <https://doi.org/10.15253/2175-6783.20222380560>

9. Dantas AATSG, Torres SVS, Farias IMA, Sant'Ana SBCL, Campos TF, et al. Rastreio cognitivo em pacientes com acidente vascular cerebral: um estudo transversal. *J Bras Psiquiatr.* 2014;63(2):98-103. doi: <https://dx.doi.org/10.1590/0047-2085000000012>
10. Carthery-Goulart MT, Anghinah R, Areza-Fegyveres R, Bahia VS, Brucki SMD, Damin A, et al. Performance of a Brazilian population on the test of functional health literacy in adults. *Rev Saúde Pública.* 2009;43(4):631-8. doi: <https://doi.org/10.1590/S0034-89102009005000031>
11. Cook CV, Pompon RH. Lessons on health literacy and communication in post-stroke rehabilitation: a primer and proposal. *Dela J Public Health.* 2023;9(3):44-9. doi: <https://dx.doi.org/10.32481/djph.2023.08.010>
12. Pavão ALB, Werneck GL, Saboga-Nunes L, Souza RA. Avaliação da literacia para a saúde de pacientes portadores de diabetes acompanhados em um ambulatório público. *Cad Saúde Pública.* 2021;37(10):e00084819. doi: <https://dx.doi.org/10.1590/0102-311X00084819>
13. Zhang Q, Huang F, Zhang L, Li S. The effect of high blood pressure-health literacy, self-management behavior, self-efficacy and social support on the health-related quality of life of Kazakh hypertension patients in a low-income rural area of China: a structural equation model. *BMC Public Health.* 2021;21(1):1114. doi: <https://dx.doi.org/10.1186/s12889-021-11129-5>
14. Silva IC, Nogueira MRN, Cavalcante TF, Felipe GF, Moraes HCC, Moreira RP, et al. Health literacy and adherence to the pharmacological treatment by people with arterial hypertension. *Rev Bras Enferm.* 2022;75(6):e20220008. doi: <https://dx.doi.org/10.1590/0034-7167-2022-0008>
15. Scortegagna HM, Santos PCS, Santos MIPO, Portella MR. Functional health literacy among hypertensive and diabetic elderly assisted by the Family Health Strategy. *Esc Anna Nery.* 2021;25(4):e20200199. doi: <https://dx.doi.org/10.1590/2177-9465-EAN-2020-0199>
16. Ganguli M, Hughes TF, Jia Y, Lingler J, Jacobsen E, Chang CCH. Aging and functional health literacy: a population-based study. *Am J Geriatr Psychiatry.* 2021;29(9):972-81. doi: <https://dx.doi.org/10.1016/j.jagp.2020.12.007>
17. Gill S, Zeki R, Kaye S, Zingirlis P, Archer V, Lewandowski, et al. Health literacy strengths and challenges of people in New South Wales prisons: a cross-sectional survey using the Health Literacy Questionnaire (HLQ). *BMC Public Health.* 2023; 23(1):1520. doi: <https://dx.doi.org/10.1186/s12889-023-16464-3>
18. Lambert CM, Olulana O, Bailey-Davis L, Abedi V, Zand R. "Lessons learned" preventing recurrent ischemic strokes through secondary prevention programs: a systematic review. *J Clin Med.* 2021;10(18):4209. doi: <https://doi.org/10.3390/jcm10184209>
19. Flink M, Lindblom S, Koch L, Carlsson AC, Ytterberg C. Health literacy is associated with less depression symptoms, higher perceived recovery, higher perceived participation, and walking ability one year after stroke - a cross-sectional study. *Top Stroke Rehabil.* 2023;30(8):865-71. doi: <https://doi.org/10.1080/10749357.2023.2178133>
20. Oliveira Júnior AJ, Mialhe FL. Letramento em saúde bucal e variáveis associadas a autopercepção de saúde bucal em adultos e idosos usuários da atenção básica: um estudo exploratório. *Cad Saúde Colet.* 2022;30(2):255-64. doi: <https://doi.org/10.1590/1414-462X202230020132>
21. Stewart CC, Yu L, Glover C, Mottola G, Valdes O, Wilson RS, et al. Well-being and aging-related decline in financial and health literacy in advanced age. *J Gerontol B Psychol Sci Soc Sci.* 2023;78(9):1526-32. doi: <http://doi.org/10.1093/geronb/gbad059>
22. Yu L, Mottola G, Bennett DA, Boyle PA. Adverse impacts of declining financial and health literacy in old age. *Am J Geriatr Psychiatry.* 2021; 29(11):1129-39. doi: <https://doi.org/10.1016/j.jagp.2021.02.042>
23. Uemura K, Yamada M, Okamoto H. The effectiveness of an active learning program in promoting a healthy lifestyle among older adults with low health literacy: a randomized controlled trial. *Gerontology.* 2021;67(1):25-35. doi: <https://dx.doi.org/10.1159/000511357>
24. Chen M, Li J, Chen C, Zhao Q, Huang H. The relationships between quality of life with health literacy, social support and resilience in older stroke survivors: a structural equation model. *Nurs Open.* 2024;11(9):e70020. doi: <https://dx.doi.org/10.1002/nop2.70020>

25. Towfighi A, Cheng EM, Ayala-Rivera M, Barry F, McCreat H, Ganz DA, et al. Effect of a coordinated community and chronic care model team intervention vs usual care on systolic blood pressure in patients with stroke or transient ischemic attack: the SUCCEED randomized clinical trial. *JAMA Netw Open*. 2021;4(2):e2036227. doi: <https://dx.doi.org/10.1001/jamanetworkopen.2020.36227>

26. Engström AH, Flink M, Lindblom S, Koch L, Ytterberg C. Association between general self-efficacy and health literacy among stroke survivors 1-year post-discharge: a cross-sectional study. *Sci Rep*. 2024;14(1):7308. doi: <https://doi.org/10.1038/s41598-024-57738-z>

27. Kolmos M, Christoffersen L, Kruuse C. Recurrent ischemic stroke - a systematic review and meta-analysis. *J Stroke Cerebrovasc Dis*. 2021;30(8):105935. doi: <http://doi.org/10.1016/j.jstrokecerebrovas-dis.2021.105935>

28. Martinelli Filho M. Anticoagulation therapy with warfarin: a reality of Brazilian public health that lacks structure for better control [editorial]. *Arq Bras Cardiol*. 2022;119(3):370-1. doi: <https://doi.org/10.36660/abc.20220504>

29. Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: a systematic review. *Br J Clin Pharmacol*. 2021;87(2):352-74. doi: <http://doi.org/10.1111/bcp.14404>

30. Malagutte KNDS, Silveira CFSMP, Reis FM, Rossi DAA, Hueb JC, Okoshi K, et al. Quality of oral anticoagulation in atrial fibrillation patients at a tertiary hospital in Brazil. *Arq Bras Cardiol*. 2022;119(3):363-9. doi: <https://doi.org/10.36660/abc.20210805>

This is an Open Access article distributed under the terms of the Creative Commons