
Revista Ciência Agronômica, v. 56, e202494455, 2025
Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE
www.ccarevista.ufc.br  ISSN 1806-6690

Scientific Article

Rice disease and pest identification integrating albert pre-trained 
language model and improved BILSTM1

Zhigui Dong2*, Tianyi Yang2, Yanchao Wang2

ABSTRACT - To solve the low recognition accuracy and slow recognition efficiency in traditional rice disease and pest recognition 

technology, this study adopts a bidirectional encoder representation pre-training model from a transformer for preliminary recognition 

of rice diseases and pests. At the same time, a bidirectional long short-term memory network is introduced for further recognition, 

and the model is optimized using conditional random fields to design a fusion algorithm for rice disease and pest recognition. 

The outcomes denoted that when the learning rate was 0.0001, the loss of the fusion algorithm was 0.04, indicating its high accuracy. 

In the identification of 6 types of rice diseases and pests, the average training time of the fusion algorithm was 31.4 seconds, the 

central processing unit occupancy rate was 94.3%, and the memory occupancy rate was 66.4%, proving that the algorithm had high 

efficiency in disease and pest identification. On the PlantVillage dataset, the accuracy of the fusion algorithm was 94.3%, higher than 

other algorithms, indicating its good recognition performance. The fusion algorithm effectively improves the rice disease and pest 

identification accuracy and efficiency, providing strong technical support for preventing and controlling other agricultural diseases and pests.

Key words: Rice; Diseases and pests; Pre-trained model; Bi-LSTM; Recognition.

DOI: 10.5935/1806-6690.20250060
Editor-in-Chief: Prof. Alek Sandro Dutra - ccarev@ufc.br
*Author for correspondence
 Received for publication 09/17/2024; approved on 22/01/2025
1This study was supported by the fundamental research project of Liaoning provincial department of education 2024 (2024JYTKYTD-02), Pioneer Research 
Team of Liaoning Institute of Science and Technology“Technology and Application of Big Data and Intelligent information Processing” (XKT202306)

2School of Electronic and Information Engineering (ICT College of HUA WEI), Liaoning Institute of Science and Technology, China, dongzhigui@163.com 
(ORCID ID 0000-0002-4168-7991), 270926402@qq.com (ORCID ID 0009-0006-4631-5114), wych0708@163.com (ORCID ID 0009-0006-1604-6486)



Rev. Ciênc. Agron., v. 56, e202494455, 20252  

  Z. Dong et al.

INTRODUCTION

As the growth of the global population, people’s 
demand for food is increasing. Rice, as one of the critical 
sources of food in the world, is susceptible to various 
diseases and pests (DPs) during the cultivation, leading 
to a decrease in rice yield and quality (Arinichev et al., 2021). 
Therefore, the prevention and control of rice DPs has 
become a hot topic of research for relevant professionals. 
In recent years, deep learning (DL) technology has 
continued to advance and has been maturely utilized 
in agricultural fields such as DPs detection (Vasantha, 
Kiranmai & Krishna, 2021). Natural language processing 
(NLP) targets to enable computers to understand, process, and 
generate human language, and has made significant progress 
(Sharma, Kumar & Deka, 2022). In NLP technology, 
Bidirectional Encoder Representation from Transformers 
(BERT) has been widely used in NLP tasks such as 
question answering, etc (Muppala and Guruviah 2021). 
A Lite Bidirectional Encoder Representation from 
Transformers (ALBERT) is an optimized model of 
BERT. Compared with BERT, its number of parameters 
is greatly reduced, which significantly improves the speed of 
model training and prediction without sacrificing performance 
(Chen et al., 2022). Therefore, ALBERT is more suitable 
for computing environments with limited resources. In 
this context, the study first uses the ALBERT model 
for feature recognition of DPs, and then improves the 
Bidirectional Long Short Term Memory (BiLSTM) 
network using the Conditional Random Fields (CRF) 
algorithm to determine the types of pests and diseases. 
The innovation of the research lies in using CRF to 
optimize BiLSTM, integrating the optimized BiLSTM 
with ALBERT model into a new model, and applying 
this model to the identification of rice DPs, improving 
the accuracy and efficiency of rice DPs identification.

This article mainly contains four parts. The first 
part is a review of the current research conditions of 
rice DPs identification technology. The second part is 
the design of a rice DP identification technology that 
integrates ALBERT and improved BiLSTM. Firstly, 
a rice DP identification method based on ALBERT is 
implemented, and then BiLSTM is introduced on the 
basis of ALBERT and improved. The third part is the 
experimental result analysis of rice DP identification 
technology integrating ALBERT and improved BiLSTM. 
The first section is the effectiveness analysis of the 
designed identification model, and the second section is 
the practical application effect analysis of the designed 
identification model. The last part summarizes the entire 
text and represents the deficiencies of the research.

In crop production, DP identification can help 
farmers accurately determine the type and degree of DPs, 
and take targeted prevention and control measures to 

improve crop yield. As the advancement of NLP technology 
and DL algorithms, many researchers have attempted to 
apply these technologies to the crop DPs identification, 
and have achieved certain results. Poornampliya et al. 
(2022) raised an artificial intelligence-based rice 
recognition method to more quickly identify crop DPs. 
The method used image processing technology and DL 
models to detect crop DPs, and the outcomes denoted that 
the recognition efficiency of this method was relatively 
high. Rathore and Prasad (2020) raised a DP recognition 
method with sequence convolutional neural network 
(CNN) to raise the detection speed and accuracy of 
crop pests and diseases. The outcomes denoted that this 
method’s prediction accuracy reached 99.61%. Upadhyay 
and Kumar (2022) designed a detection method for rice 
DPs with the size, shape, and color recognition of disease 
spots in leaf images to find a proper method for diagnosing 
rice DPs. The method used global thresholding technology 
to binarize the images and trained a fully connected CNN. 
The outcomes denoted that the accuracy of the method 
on the dataset was as high as 99.7%. Puspitasari et al. 
(2023) designed an expert diagnostic system based on 
naive Bayes network to accurately diagnose the DPs of 
black rice crops. The system used naive Bayes to obtain 
the percentage information of rice that may be affected 
by pests. The outcomes denoted that the diagnostic 
accuracy of this method was 80%, which could effectively 
diagnose pests on black rice crops. Chithambarathanu 
and Jeyakumar (2023) designed a crop DP identification 
technology based on DL methods for effective crop DP 
management and control. The technology connected 
intelligent mobile devices with crop related diseases 
through deep CNNs. The outcomes denoted that using this 
technology for disease driving improved crop yields.

Tholkapiyan et al. (2023) raised a rice disease 
recognition model based on hybrid DL technology to 
achieve automatic detection of crop DPs. The model 
combined meta heuristic optimization algorithm and DL to 
evaluate the types of rice diseases. The outcomes denoted 
that the method had high detection accuracy. Iqbal et al. 
(2023) raised a disease detection system that combines 
image processing and VGG19 to reduce the losses of rice 
after suffering from pests and diseases. VGG19 was used 
as a classifier to classify diseases and extract features using 
image processing techniques. The outcomes denoted that the 
accuracy of DP detection in this method reached 97.94%, 
which was better than other models. Tyagi et al. (2024) 
developed a lightweight DP detection system based on 
CNNs with mobile application integration for accurate 
detection of rice leaf diseases. It could effectively extract 
regions of interest from rice disease images and classify 
the images using a lightly weighted CNN. The outcomes 
denoted that the accuracy, precision, recall, and F1 score 
of the system were superior to those of traditional models. 
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Nugroho et al. (2024) designed a rice DP expert system 
based on deterministic graphical strategy to effectively 
diagnose rice pillar infections. The system tested multiple 
rice sowing sites in a certain region and evaluated the 
accuracy level using post tests. The outcomes denoted 
that the confidence level of the accuracy level was 100%, 
indicating a high detection accuracy. Rajpoot, Tiwari & Jalal 
(2023) raised an early automatic detection method for 
rice leaf diseases with a hybrid DL and machine learning 
approach to address the issue of slow recognition speed 
in traditional rice DP identification methods. The method 
utilized regional CNNs and VGG 16 transfer learning to 
extract features, and used random forest algorithm for 
classification. The outcomes denoted that the average 
accuracy of this method for rice disease classification 
was 97.3%, and the effect was good.

In summary, scholars have obtained significant 
results in the field of crop DP identification. Nevertheless, 
these technologies still face low computational efficiency 
and high model complexity. In view of this, the study is 
based on the ALBERT model and introduces BiLSTM 
for optimization. At the same time, the CRF algorithm 
is utilized to raise the accuracy of the BiLSTM model, 
aiming to achieve precise prevention and control of rice 
DPs, improve rice output, and provide scientific basis for 
maintaining food security.

MATERIALS AND METHODS

This part mainly elaborates on the implementation of 
rice DP recognition technology that integrates ALBERT and 
improved BiLSTM. The first section is the implementation of 
a rice DP recognition method designed based on the ALBERT 
model, and the second section is the design process of 
integrating the improved BiLSTM into the ALBERT model.

Identification technology of rice diseases and pests based 
on ALBERT

Accurate identification of different DPs is greatly 
significant for the healthy growth of rice in the prevention 
and control of rice DPs. In traditional DP recognition, 
methods based on dictionaries and rules, statistical 
machine learning, Recurrent Neural Network (RNN), 
Long Short-Term Memory (LSTM), etc. are often used. 
However, these methods also have disadvantages such as high 
requirements for feature selection, dependence on corpora, 
and low recognition accuracy (Simkhada and Thapa, 2022). 
Therefore, to address the issues in identifying rice DPs, 
the ALBERT model is introduced in the study. ALBERT 
is a lightweight version of BERT, with four fifths of the 
number of parameters. It embeds vector parameterized 
factorization, achieves cross layer parameter sharing, 
removes dropout, and proposes inter sentence coherence 

loss to model inter sentence coherence, achieving better 
results with a smaller model. The backbone network of the 
ALBERT architecture is a Transformer-Encoder structure 
with a non-linear GELU activation function, similar 
to BERT. The ALBERT model technology roadmap is 
denoted in Figure 1.

In the ALBERT model, its basic unit is the 
Transformer, which contains multiple layers of stacked 
encoders, each of which has a feedforward neural network 
and a multi-head attention (MHA). In the training of the 
encoder, the first input is the dataset. Due to the temporal 
nature of the dataset, it needs to be vectorized and specific 
positional encoding needs to be added. The transformation 
formula for the dataset is denoted in equation (1).

( ) DSBRXpXEX ××∈+= ,0
                                         （1）

In equation (1), X means the matrix vector of the dataset. 
E means the linear transformation function. X0  means the 
initial dataset, P means positional encoding. R represents 
real numbers. B represents batch size. S represents sentence 
length. D represents vector dimension. Then calculate 
MHA, which is composed of multiple single head attention 
combinations. Only single-head attention needs to be 
calculated, and the calculation is denoted in equation (2).
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Figure 1- ALBERT model technology roadmap
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In equation (2), XA represents single-head attention. 
softmax( )⋅  represents activation function. Q , K , and V  
mean query vector, key vector, and value vector, respectively. 
T  represents transpose. QW , KW , and VW  represent weight 
matrices. MHA can divide the input text into multiple 
parts and perform independent attention calculations 
on each part. Each head generates an attention weight 
vector to indicate which parts of the text it is paying 
attention to. Finally, these weight vectors are combined 
into a vector to represent the overall meaning of the 
text, helping people better understand the complex 
relationships and semantic information in the text. The 
implementation of MHA is denoted in Figure 2.

Then it performs residual connections and 
normalizes them. In deep neural networks, there are 
often issues such as information decay, etc., which 
increase the difficulty of training and reduce model 
performance (Shahriar et al., 2020). Therefore, a 
technology is needed to address this issue. Residual 
connection is a more convenient path constructed by 
passing the input signal directly to the subsequent layers 
of the network through skip connections. It normalizes 
the input and output of different Transformer layers 
through normalization operation, and uses residual 
connection operation to superimpose the normalized 
input and output, thus achieving multi-layer stacking. 
To achieve global parameter sharing of MHA module 
feedforward neural network, it is necessary to perform 
linear transformation on attention and activate it 

through an activation function. The calculation method 
is denoted in equation (3).

ReLU(Linear(Linear( )))H AX X=                                     (3)

In equation (3), HX  represents shared MHA. ReLU( )⋅  
represents linear rectification activation function. Linear( )⋅  
represents linear transformation function. Lastly, the network 
is trained, and the training process is optimized using Adaptive 
Moment Estimation (Adam). The calculation method is 
denoted in equation (4).

( ) ( )[ ]yyyyL ˆ1log1ˆlog −−+−=                                                                      (4)

In equation (4), L  means cross entropy loss, 
y  represents true output, and ŷ  represents predicted 

output. The process of identifying rice pests and diseases 
based on the ALBERT model is shown in Figure 3.

In Figure 3, it first inputs the text data of rice 
DPs, uses annotation tools to annotate and check for 
errors. Then it inputs the text data into the ALBERT 
model, and utilizes the BERT model to identify the 
features of different pests and diseases. Then, based 
on the entity label matching template, it compares and 
confirms the existence of pests and diseases. If the pests 
and diseases exist, it indicates accurate identification. 
Then, they are saved according to the category of pests 
and diseases, and the identification is complete. If the 
pest does not exist, the identification is incorrect. The 
pest does not belong to rice and will not be saved. The 
identification is complete.

L L L L L L L L L
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Figure 2 - Multi-head attention implementation process
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Figure 3 - Rice DPs identification based on the ALBERT model

Disease and pest identification algorithm integrating 
ALBERT and improved BiLSTM

Although the DP recognition technology based 
on the ALBERT model can effectively identify rice DPs, in 
the training of the MHA layer of the ALBERT model, 
it cannot capture the relative positions between different 
features well, resulting in missing position information 
and inaccurate output results (Khan et al., 2023). 
Therefore, the study introduces BiLSTM to further capture 
the information between rice DP feature sequences to 
ensure their orderliness, and predicts the categories of 
different DPs through CRF algorithm to better handle 
the dependency relationship between adjacent labels 
and improve the effectiveness of the model. BiLSTM 
is a DL model commonly utilized to process time series 
data with good predictive effectiveness. The roadmap for 
implementing BiLSTM is denoted in Figure 4.

In Figure 4, BiLSTM contains two independent 
LSTMs that process the input feature sequence from two 
directions. Each LSTM unit includes inputting, forgetting, 
outputting gates, and cell state, and the calculation 
methods for each component are indicated in equation (5).
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In equation (5), 
ti  represents the output gate, 

t  represents the time step, σ  represents the sigmoid 
activation function, tx  refers to the output of the current 
time step, tf  represents the forget gate, 

tc  refers to the 
cell state of the current time step, tc  means the updated 
cell state, to  means the output gate, th  refers to the 
hidden state update, tanh( )⋅  means the hyperbolic tangent 
function, w  means the weight matrix, and b  represents 
the bias vector. At each time step of BiLSTM, although the 
Softmax layer can be used to directly predict the labels for 
that time step, the predicted labels do not take into account 
the information of the labels before and after, resulting in 
poor prediction performance. Therefore, after bidirectionally 
encoding the text vector sequence trained by the ALBERT 
model using BiLSTM, the CRF algorithm is introduced to 
optimize BiLSTM and further predict the feature sequence 
to obtain the final result. The CRF algorithm is a conditional 
probability distribution model that outputs random variables 
given a set of input random variables. It is commonly used 
to label sequences and considers the interaction between 
labels. It utilizes a global inference algorithm to optimize 
the optimization results of the entire sequence. The technical 
roadmap of CRF algorithm process is shown in Figure 5.

In the CRF algorithm, for two random variables, 
if one variable holds true and the other variable forms a 
Markov random field denoted by an undirected graph, and 
holds true at any node, then the conditional probability 
distribution is a conditional random field. The specific 
expression is shown in equation (6).

Figure 4- BiLSTM implementation roadmap
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In equation (6), X  and Y  represent random 
variables, P  represents conditional probability, and 
n  represents sequence length. By using conditional 
probability as the weight of the decoder output, the 
evaluation score can be calculated using the method 
shown in equation (7).
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In equation (7), S  represents the evaluation 
score, and A  represents the transition matrix. By 
evaluating the score, the maximum probability of 
sequence labels can be calculated. The study uses a 
normalization index for calculation, as indicated in 
equation (8).
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Figure 5 - BiLSTM implementation roadmap

L L L L L L L L L L

L L L L L L L L L L

Output

ALBERT

Forward

Backward

Context

CRF

Figure 6 - ALBERT-IBiLSTM model technology roadmap

                                                                                          (8)( )
( )

( )∑
=

= n

i

yxS

iyxSe

exyP

0

,

,                                                                                                        

In equation (8), ( | )P y x  means the maximum 
probability of sequence labels, and e  means the 
natural constant. Combining the ALBERT model with the 
improved BiLSTM to form a new model Fusion of ALBERT 
and Improved BiLSTM Model (ALBERT-IBiLSTM). The 
technical roadmap implementation of this model is 
shown in Figure 6.

In Figure 6, the ALBERT model is first 
used for feature extraction to obtain the contextual 
representation of rice DP data text. Then, BiLSTM is 
utilized to model the context of pest and disease data 
text to capture information in the sequence. Finally, the 
labels in the sequence are calculated using the CRF 
algorithm, and the obtained label sequence is output.
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RESULTS AND DISCUSSION

This chapter mainly illustrates on the experiment 
findings of the rice DP identification algorithm 
that integrates ALBERT and improved IBiLSTM. 
The first section is the performance test results of 
ALBERT-IBiLSTM, and the second section is the real 
utilization effect of the ALBERT-IBiLSTM model in 
DP identification.

Performance analysis of ALBERT-IBiLSTM model

To identify the effectiveness of the design method, 
experiments were completed using Python 3.7 on an 
operation system equipped with an Intel (R) Xeon (R) 
Gold 6140 @ 2.30GHz central processing unit, RTX 
3080Ti graphics card, 32GB of RAM, 1TB hard drive, 
CUDNN 8.3 DL library, and CUDN10.2 computing 
platform. The maximum input length of Transformer 
was set to 64, batch size to 32, initial learning rate (LR) 
to 0.001, and maximum iteration count to 200. Firstly, 
the LR of the model was adjusted using the Adam 
algorithm, and the loss function was used to calculate 
the loss at different LRs. The results were compared 
with the ALBERT-BiLSTM model, as shown in Figure 7.

Figures 7 (a) and (b) show the loss curves of the 
ALBERT-BiLSTM and ALBERT-IBiLSTM models at 
different LRs, respectively. From Figure 7 (a), at different 
LRs, the loss of the ALBERT-BiLSTM model gradually 
decreased and reached stability. When the LR was 0.001, 
the loss curve of the ALBERT-BiLSTM model reached 
stability with a loss value of 0.28. When the LR was 0.0001, 
the loss curve reached stability with a loss value of 0.21. 
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Figure 7 - Loss curves of two models at different learning rates

When the LR was 0.00001, that of the ALBERT-BiLSTM 
model reached a flat state with a loss value of 0.23. From 
Figure 7 (b), the loss of the ALBERT-IBiLSTM model 
decreased with increasing iteration times at three different 
LRs. When the LRs were 0.001, 0.0001, and 0.00001, the 
loss curves of the model reached a stable state with losses 
of 0.11, 0.04, and 0.08, respectively. As the LR increased, 
the loss of both models first decreased and then increased, 
indicating that an appropriate LR should be selected during 
model training. Meanwhile, at different LRs, the loss of 
the ALBERT-IBiLSTM model was smaller than that of 
the ALBERT-BiLSTM model, demonstrating the high 
prediction accuracy of the ALBERT-IBiLSTM model. 
To test the running efficiency of the ALBERT-IBiLSTM 
model, three indicators including average training time, 
CPU usage, and memory utilization were calculated and 
compared with the ALBERT-BiLSTM model and the 
methods in references (Khan et al., 2023; Puta et al., 2023; 
Sourav and Wang, 2023). The outcomes are indicated in Table 1.

From Table 1, the average training time of 
ALBERT-BiLSTM was 81.6 seconds, with a CPU 
usage rate of 94.3% and a memory usage rate of 66.4%. 
The average training time, CPU usage, and memory 
utilization of the method in reference (Khan et al., 2023) 
were 67.9 seconds, 90.6%, and 53.2%, respectively. 
The three indicator values of the method in reference 
(Puta et al., 2023) were 63.3s, 83.7%, and 51.2%, 
respectively. The three indicator values of the method 
in reference (Sourav and Wang, 2023) were 52.5s, 76.2%, 
and 45.4%, respectively. The three indicators of 
ALBERT-IBiLSTM were 31.4s, 53.8%, and 36.6%, 
respectively. Analysis shows that the three indicators 
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of the ALBERT-IBiLSTM model are greatly lower 
than those of the other four models, indicating its 
high operational efficiency. To assess the comprehensive 
effectiveness of the ALBERT-IBiLSTM model, the 
accuracy, recall, and F1 score of ALBERT-IBiLSTM, 
reference (Sourav and Wang, 2023), reference (Putra, 
Salfiati & Wirman, 2023), reference (Khan et al., 2023), 
and ALBERT-BiLSTM were calculated separately. The 
results are shown in Figure 8.

Figures 8 (a), (b), and (c) show the accuracy, 
recall, and F1 score of 5 models, respectively. From 
Figure 8 (a), the accuracy of different models increased 
with the amount of iterations. When the amount of 
iterations arrived 200, the accuracy of ALBERT-IBiLSTM, 
the method in reference (Sourav and Wang, 2023), the 
method in reference (Puta et al., 2023), the method in 
reference (Khan et al., 2023), and ALBERT-BiLSTM 
was 95.49%, 92.71%, 93.73%, 90.16%, and 87.32%, 

Table 1 - Average training time, CPU usage, and memory utilization of different models

Model Average training time (s) CPU usage rate (%) Memory utilization (%)
ALBERT-BiLSTM 81.6 94.3 66.4
Khan et al., 2023 67.9 90.6 53.2
Puta et al., 2023 63.3 83.7 51.2
Sourav and Wang, 2023 52.5 76.2 45.4
ALBERT-IBiLSTM 31.4 53.8 36.6
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respectively. From Figure 8 (b), the recall rates of the 
five models were 95.03%, 91.55%, 93.81%, 89.82%, 
and 86.59%, respectively. From Figure 8 (c), the F1 scores 
of the five methods were 94.76%, 90.03%, 93.77%, 90.38%, 
and 86.81%, respectively. It can be observed that the three 
indicators of the ALBERT-IBiLSTM model are higher than 
the other four models, indicating that its comprehensive 
performance is good.

Application analysis of ALBERT-IBiLSTM in rice 
disease and pest identification

To verify the actual effectiveness of ALBERT-
IBiLSTM in identifying rice DPs, the PlantVillage dataset 
was introduced. 1000 rice DP data were selected and broken 
into a test set and a training set in a 6:4 ratio. The selected 
data includes 5 types of rice pests and diseases, specifically 
rice blast disease, rice planthopper, rice bacterial stripe 
disease, rice blast disease, and rice bacterial leaf blight, 
represented by 0, 1, 2, 3, 4, and 5, respectively. Firstly, 
the recognition performance of ALBERT-IBiLSTM on 
the test set was verified and compared with the results of 
ALBERT-BiLSTM. The confusion matrices of the two 
models are denoted in Figure 9.

Table 2 - ALBERT-IBiLSTM model ablation experiment results

Model Accuracy Precision Recall rate F1 score
ALBERT 0.688 0.526 0.806 0.769
ALBERT-LSTM 0.751 0.563 0.861 0.787
ALBERT-BiLSTM 0.824 0.634 0.894 0.829
BiLSTM-CRF 0.835 0.688 0.903 0.836
ALBERT-IBiLSTM 0.893 0.729 0.942 0.885

Figures 9 (a) and (b) show the confusion matrix of 
the ALBERT-BiLSTM and ALBERT-IBiLSTM models, 
respectively. From Figure 9(a), the ALBERT-BiLSTM model 
had recognition rates of 89.1%, 82.7%, 94.9%, 60.3%, 92.9%, 
and 69.2% for six types of rice pests and diseases, respectively. 
From Figure 9(b), the ALBERT-IBiLSTM model had 
recognition rates of 90.7%, 95.1%, 98.3%, 76.8%, 97.5%, 
and 89.2% for six types of rice pests and diseases, respectively. 
Outcomes illustrates that the ALBERT-IBiLSTM model has a 
significantly higher recognition rate for various pests 
and diseases than other models, indicating its good 
performance. To prove the effectiveness of various 
modules of the ALBERT-IBiLSTM model, ablation 
experiments were organized on the PlantVillage 
dataset, and the outcomes are indicated in Table 2.

From Table 2, in the ablation experiment, 
the accuracy of ALBERT-IBiLSTM was 0.893, an 
improvement of 20.5% compared to ALBERT, 14.2% 
compared to ALBERT-LSTM, 6.9% compared to 
ALBERT-BiLSTM, and 5.8% compared to BiLSTM-CRF. 
The macro average precision of ALBERT-IBiLSTM 
was 0.726, and the macro average recall and F1 score 
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Figure 9 - Confusion Matrix between ALBERT BiLSTM Model and ALBERT IBiLSTM
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were 0.942 and 0.885, respectively, which were higher 
than other modules in the model. This proved the 
effectiveness of the ALBERT-IBiLSTM model and 
further verified its high recognition accuracy. Finally, 
the PlantVillage dataset was applied to train the model, 
calculate its accuracy, and compare it with other 
models. The results are shown in Figure 10.

From Figure 10, after training the models using the 
PlantVillage dataset, as the amount of iterations increased, 
the accuracy of each model showed an upward trend and 
gradually stabilized. When the amount of iterations was 200, 
the accuracy of ALBERT-IBiLSTM, the method in reference 
(Sourav and Wang, 2023), the method in reference 
(Puta et al., 2023), the method in reference (Khan et al., 2023), 
and ALBERT-BiLSTM was 94.3%, 88.9%, was 90.7%, 
was 85.1%, and 76.4%, respectively. Compared with 
other models, the accuracy of ALBERT-IBiLSTM has 
significantly improved, further proving that this model 
can effectively detect rice DPs.

CONCLUSIONS

In recent years, there have been frequent 
occurrences of DPs in the process of rice cultivation. 
Accurately identifying DPs can help detect their existence 
as early as possible and take preventive measures to 
protect the health of rice. The traditional methods for 
identifying rice DPs are not effective. Therefore, a rice 
DP identification model based on ALBERT-IBiLSTM was 
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Figure 10 - The accuracy of different models on the 
PlantVillage dataset

designed by combining the ALBERT model with BiLSTM 
network and introducing CRF algorithm to optimize 
BiLSTM. The outcomes denoted that the average training 
time of the ALBERT-IBiLSTM model was 31.4 seconds, 
with a CPU usage rate of 53.8% and a memory utilization 
rate of 36.6%, significantly lower than the three indicators 
of other models, proving that the ALBERT-IBiLSTM 
model has high running efficiency. The accuracy, recall, 
and F1 score of the ALBERT-IBiLSTM model were 95.49%, 
95.03%, and 94.76%, respectively, which were significantly 
higher than other models, proving its good comprehensive 
performance. The ALBERT-IBiLSTM model could 
achieve a recognition rate of up to 98.3% for six 
types of rice DPs, proving its good effectiveness in 
practical applications of rice DP recognition. Although 
significant results have been achieved in the research, 
there are still some shortcomings. Rice may suffer from 
different DPs at different growth stages, in different 
regions, and under different climatic conditions. 
However, the study only analyzed six types of rice 
DPs. Therefore, future research will introduce more 
types of DPs to further validate the model, to improve 
its robustness and practicality.
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