Basic logic deontic and filters

Authors

DOI:

https://doi.org/10.36517/Argumentos.22.1

Keywords:

Deontic logic. Filters. Modal logics. Models for modal logics.

Abstract

Deontic logic is a branch of symbolic logic interested in notions as obligatory, permissible, forbidden, and similar ones. One presentation of Standard Deontic Logic, well known as the modal logic KD, has an appearance that remember the mathematical structure of filters. So we show that indeed the class of proper filters on Boolean algebras are adequate model for KD.

Author Biography

Cristiane A. Lázaro, UNESP

Professora da UNESP

References

Bell, J. L.; Machover, M. A course in mathematical logic. Amsterdam: North-Holland, 1977.

Blackburn, P.; Rijke, M.; Venema, Y. Modal logic. Cambridge: Cambridge University Press, 2001.

Carnielli, W. A.; Pizzi, C. Modalità e multimodalità. Milano: Franco Angeli, 2001.

Chagrov, A.; Zakharyaschev, M. Modal logic. Oxford: Clarendon Press, 1997.

Chellas, B. Modal Logic: an introduction. Cambridge: Cambridge University Press, 1980.

Dunn, J. M.; Hardegree, G. M. Algebraic methods in philosophical logic. Oxford: Oxford University Press, 2001.

Ebbinghaus, H. D.; Flum, J.; Thomas, W. Mathematical logic. New York: Springer-Verlag, 1984.

Enderton, H. B. A mathematical introduction to logic. San Diego: Academic Press, 1972.

Fitting, M.; Mendelsohn, R. L. First-order modal logic. Dordrecht: Kluwer, 1998.

Mendelson, E. Introduction to mathematical logic. 3. ed. Monterey, CA: Wadsworth and Brooks / Cole Advanced Books and Software, 1987.

Miraglia, F. Cálculo proposicional: uma interação da álgebra e da lógica. Campinas: UNICAMP/CLE, 1987. (Coleção CLE, v. 1).

Rasiowa, H.; Sikorski, R. The mathematics of metamathematics. 2. ed. Waszawa: PWN - Polish Scientific Publishers, 1968.

Rasiowa, H. An algebraic approach to non-classical logics. Amsterdam: North-Holland, 1974.

Published

2019-11-18

Issue

Section

Artigos