An intermediate term functor logic

Autores/as

DOI:

https://doi.org/10.36517/Argumentos.22.2

Palabras clave:

Plus-minus algebra. Non-classical quantifiers. Common sense reasoning.

Resumen

Neste artigo, tentamos fazer algo bastante simples: conhecer os avanços de Sommers e Englebretsen (a saber, uma álgebra mais-menos para silogística) juntamente com os desenvolvimentos de Peterson e Thompson (ou seja, uma extensão da silogística com “a maioria”, “Muitos” e “poucos”). O resultado é uma silogística intermediária que lida com uma ampla gama de padrões lógicos, mas com as virtudes de uma abordagem algébrica.

Citas

CARNAP, Rudolf. Die alte und die neue Logik. Erkenntnis, 1, 12–26, 1930.

ENGLEBRETSEN, George. The New Syllogistic. Peter Lang, 1987.

ENGLEBRETSEN, George. Linear Diagrams for Syllogisms (with Relationals). Notre Dame J Formal Logic 33(1), 37–69, 1991.

ENGLEBRETSEN, George. Something to Reckon with: The Logic of Terms. University of Ottawa Press, 1996.

ENGLEBRETSEN, George and SAYWARD, Charles. Philosophical Logic: An Introduction to Advanced Topics. Bloomsbury Academic, 2011.

GEACH, Peter. Reference and Generality: An Examination of Some Medieval and Modern Theories. Cornell University Press, 1962.

GEACH, Peter. Logic Matters. University of California Press, 1980.

KHEMLANI, Sangeet and JOHNSON-LAIRD, Philip. Theories of the Syllogism: a Meta-Analysis. Psychological Bulletin, 427–457, 2012.

KUHN, Steven. An Axiomatization of Predicate Functor Logic. Notre Dame J Formal Logic 24(2), 233–241, 1983.

MOSS, Lawrence. Natural Logic. In: Lappin, S., Fox, C. (eds.) The Handbook of Contemporary Semantic Theory, John Wiley & Sons, 2015.

MOSTOWSKI, Anderzj. On a Generalization of Quantifiers. Fundamenta Mathematicae 44(2):12–36, 1957.

MOZES, Eyal. A Deductive Database Based on Aristotelian Logic. Journal of Symbolic Computation 7(5):487–507, 989.

MURPHREE, Wallace. Numerical term logic. Notre Dame J Formal Logic, 39(3):346–362, 1998.

NOAH, Aris. Predicate-functors and the Limits of Decidability in Logic. Notre Dame J Formal Logic 21(4):701–707, 1980.

NOAH, Aris. Sommers’s Cancellation Technique and the Method of Resolution. In: Oderberg, D. (ed.) The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford, pp. 169–182, 2005.

PAGNAN, Ruggero. A Diagrammatic Calculus of Syllogisms. Journal of Logic, Language and Information 21(3):347–364, 2012.

PETERSON, Philip. On the Logic of “Few”, “Many”, and “Most”. Notre Dame J Formal Logic 20(1):155–179, 1979.

QUINE, Willard Van Orman. Predicate Functor Logic. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, North-Holland, 1971.

SOMMERS, Fred. On a Fregean Dogma. In: Lakatos, I. (ed.) Problems in the Philosophy of Mathematics, Studies in Logic and the Foundations of Mathematics, v. 47, Elsevier, pp. 47–81, 1967.

SOMMERS, Fred. The Logic of Natural Language. Oxford University Press, 1982.

SOMMERS, Fred. Intelectual Autobiography. In: Oderberg, D. (ed.) The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford, pp. 1–24, 2005.

SOMMERS, Fred and ENGLEBRETSEN, George. An Invitation to Formal Reasoning: The Logic of Terms. Ashgate, 2000.

THOMPSON, Bruce. Syllogisms using “Few”, “Many”, and “Most”. Notre Dame J Formal Logic 23(1):75–84, 1982.

THOMPSON, Bruce. Syllogisms with Statistical Quantifiers. Notre Dame J Formal Logic 27(1):93–103, 1986.

VEATCH, Henry Babcock. Intentional Logic: a Logic Based on Philosophical Realism. Archon Books, 1970.

WESTERSTÅL, Dag. Aristotelian Syllogisms and Generalized Quantifiers. Studia Logica 48(4):577–585, 1989.

Descargas

Publicado

2019-11-18

Número

Sección

Artigos