Properties of primes and natural mathematics: a minimalist algorithm for prime numbers

Autores

  • Dany Jaspers

Palavras-chave:

Quantificação. Sistemas numéricos. Sistema de oposições. Disjunção. Conjunção.

Resumo

Este trabalho discute a quantificação precisa por meios de sistemas numéricos em analogia à análise anterior de Jaspers (2005) a respeito da quantificação comparativamente vaga expressa por operadores do cálculo de predicados {todos, todo, cada, algum, nenhum}. É defendido que números oferecem um interessante teste-base para a validade da abordagem Booleana aos quantificadores (Jaspers, 2005). Mais detidamente, esta excursão na matemática é realizada para mostrar que o mesmo sistema lógico-cognitivo de oposições subjacente na língua natural também governa a matemática natural. O ponto de partida concreto do artigo é o problema dos “twin primes” de Popper, que é seguido por uma discussao de sistemas de números, sobretudo a distinção entre sistema dos numeros naturais {(0,) 1, 2,...} e o sistema de números primos. Em relação ao primeiro será defendido que é organizado pela operação de adição/subtração. A sequência de números primos é diferente, porque é mais multiplicativa/divisional que aditiva. É geralmente reconhecido em círculos matemáticos que o último tipo de sequência é mais complexo que o primeiro. Este fato acompanha bem (e, portanto, oferece suporte indireto para) as descobertas linguísticas em Jaspers (2005), cujo o núcleo foi a defesa que disjunção na língua natural _ conhecida por ser isomórfica à adicao na álgebra álgebra - é cognitiva e lexicalmente mais complexa que a conjunção, que é isomórfica à multiplicação.

Biografia do Autor

Dany Jaspers

Professor, KU Leuven/HUBrussels-CRISSP.

Downloads

Publicado

2013-07-01

Edição

Seção

Philosophy of Logic and Mathematics