Deciphering price dynamics: A bibliometric analysis of research trends in the financial market

Authors

DOI:

https://doi.org/10.36517/contextus.2025.95480

Keywords:

price dynamics; financial markets; bibliometrics; base analysis; research agenda.

Abstract

Background: The dynamics of financial price behavior have become a central theme in economic literature, especially considering increasing market volatility, technological advancements, and new global interdependencies. Understanding the factors that influence this dynamic is crucial, particularly in a scenario marked by uncertainties and ongoing digital transformations. 

Purpose: This study aims to investigate the evolution of the scientific literature on financial price dynamics from 1970 to 2024. The focus is on mapping the trajectory of research, identifying its theoretical and social foundations, and outlining the emerging trends that shape the current and future research agenda in the field. 

Method: A bibliometric approach was adopted, analyzing 3,648 publications extracted from the Scopus and Web of Science databases. The analysis process was divided into three stages: (i) temporal evolution of scientific production, (ii) analysis of the conceptual and social foundation through co-occurrence networks, thematic mapping, and author collaboration, and (iii) identification of emerging trends, with an emphasis on thirteen areas of study. Results: The literature on price dynamics showed consistent growth, with notable peaks during economic crises and technological innovations. The scientific production revealed increasing integration between micro and macroeconomic approaches, with a focus on empirical models. 

Conclusions: The emerging trends indicate that the integration of advanced technologies and sustainable practices will significantly impact price modeling and investment decision-making. The research also points to new directions, such as considering environmental variables and the need for hybrid and adaptive models to cope with the volatility and complexity of financial markets.

Downloads

Download data is not yet available.

Author Biographies

Alexandra Kelly de Moraes, Federal University of Lavras (PPGA/UFLA)

PhD student in Administration at Federal University of Lavras (PPGA/UFLA)

Master’s in Administration and development from the Federal Rural University of Pernambuco (UFRPE)

Luiz Gonzaga de Castro Junior, Federal at University of Lavras (PPGA/UFLA)

Professor   of the   Postgraduate Program   in Administration Federal at University of Lavras (PPGA/UFLA)

PhD in Applied Economics from the University of São Paulo (USP)

References

Agnello, L., Castro, V., Hammoudeh, S., & Sousa, R. (2020). Global factors, uncertainty, weather conditions and energy prices: On the drivers of the duration of commodity price cycle phases. Energy Economics, 90. https://doi.org/10.1016/j.eneco.2020.104862

Almutairi, H., Pierru, A., & Smith, J. (2024). Managing the oil market under misinformation: A reasonable quest? Journal of Commodity Markets, 34. https://doi.org/10.1016/j.jcomm.2024.100403

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Arslan, S. (2024). Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition. Computational Economics, 65, 2227–2248. https://doi.org/10.1007/s10614-024-10588-3

Ashena, M., Khezri, H. L., & Shahpari, G. (2024). Investigation into the dynamic relationships between global economic uncertainty and price volatilities of commodities, raw materials, and energy. Applied Economic Analysis, 32. https://doi.org/10.1108/aea-06-2023-0207

Ashwin, J. (2024). Financial news media and volatility: Is there more to newspapers than news? Journal of Financial Markets, 69. https://doi.org/10.1016/j.finmar.2024.100896

Asproudis, E., Gedikli, Ç., Talavera, O., & Yılmaz, O. (2024). Returns to solar panels in the housing market: A meta learner approach. Energy Economics, 137. https://doi.org/10.1016/j.eneco.2024.107768

Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l'École Normale Supérieure, 17, 21–86. https://www.numdam.org/item?id=ASENS_1900_3_17__21_0

Baker, S. R., Bloom, N., & Davis, S. J. (2016), Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024

Batten, J. A., Mo, D., & Pourkhanali, A. (2024). Can inflation predict energy price volatility? Energy Economics, 129, https://doi.org/10.1016/j.eneco.2023.107158

Beckmann, J., Geldner, T., & Wuestenfeld, J. (2024). The relevance of media sentiment for small and large scale bitcoin investors. Journal of International Financial Markets, Institutions and Money, 92. https://doi.org/10.1016/j.intfin.2024.101963

Berry, C., & Börjesson, M. (2024). Income and fuel price elasticities of car use on micro panel data. Energy Economics, 135. https://doi.org/10.1016/j.eneco.2024.107661

Bhattacharya, P. S. (2024). Pass‐through to export prices: Evidence from Australia. The World Economy, 47, 2574–2607. https://doi.org/10.1111/twec.13554

Boddin, D., & Stähler, F. (2024). Import tariffs and transport prices. Canadian Journal of Economics, 24, 430–458. https://doi.org/10.1111/caje.12708

Brock, W. A., & Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22(8–9), 1235-1274. https://doi.org/10.1016/S0165-1889(98)00011-6

Buccheri, G., Grassi, S., & Vocalelli, G. (2024). Estimating Risk in Illiquid Markets: A Model of Market Friction with Stochastic Volatility. Journal of Financial Econometrics, 22. https://doi.org/10.1093/jjfinec/nbad006

Bunek, G. D., & Janzen, J. P. (2024). Does public information facilitate price consensus? Characterizing USDA announcement effects using realized volatility. Journal of Commodity Markets, 33. https://doi.org/10.1016/j.jcomm.2024.100382

Campos-Martins, S., & Hendry, D. F. (2024). Common volatility shocks driven by the global carbon transition. Journal of Econometrics, 239. https://doi.org/10.1016/j.jeconom.2023.05.008

Castro, C., & Jimenez-Rodriguez, R. (2024). The impact of oil shocks on the stock market. Global Finance Journal, 60. https://doi.org/10.1016/j.gfj.2024.100967

Chen, K., & Yang, J. (2024). Price dynamics and volatility jumps in bitcoin options. Financial Innovation, 10(132), 1-29. https://doi.org/10.1186/s40854-024-00653-z

Chuliá, H., Klein, T., Mendoza, J. A. M., & Uribe, J. M. (2024). Vulnerability of European electricity markets: A quantile connectedness approach. Energy Policy, 184. https://doi.org/10.1016/j.enpol.2023.113862

Ciaschini, C., & Recchioni, M. C. (2024). A market sentiment indicator, behaviourally grounded, for the analysis and forecast of volatility and bubbles. Review of Behavioral Finance, 16. https://doi.org/10.1108/rbf-07-2021-0128

Conlon, T., Corbet, S., & Hou, Y. (2024). Navigating the green transition: the influence of energy volatility on green and sustainable ETFs. Applied Economics Letters. https://doi.org/10.1080/13504851.2024.2337323

Conlon, T., Corbet, S., Hou, Y., Hu, Y., & Oxley, L. (2024). Seeking a shock haven: Hedging extreme upward oil price changes. International Review of Financial Analysis, 94. https://doi.org/10.1016/j.irfa.2024.103245

Cuaresma, J. C., Fortin, I., Hlouskova, J., & Obersteiner, M. (2024). Regime‐dependent commodity price dynamics: A predictive analysis. Journal of Forecasting, 43. https://doi.org/10.1002/for.3152

Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor Psychology and Security Market Under- and Overreactions. The Journal of Finance, 6. https://doi.org/10.1111/0022-1082.00077

De Lipsis, V., & Agnolucci, P. (2024). Climate change and the US wheat commodity market. Journal of Economic Dynamics and Control, 161. https://doi.org/10.1016/j.jedc.2024.104823

Ding, S., Wang, A., Cui, T., Du, M., & Zhou, X. (2024). Commodity market stability and sustainable development: The effect of public health policies. Research in International Business and Finance, 70. https://doi.org/10.1016/j.ribaf.2024.102386

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

Durisin, B., & Puzone, F. (2009). Maturation of Corporate Governance Research, 1993–2007: An Assessment. Corporate Governance: An International Review, 17(3), 266-291. https://doi.org/10.1111/j.1467-8683.2009.00739.x

Engle, R. F., & Russell, J. R. (1998). Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica, 66(5), 1127-1162. https://doi.org/10.2307/2999632

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25, 383-417.

Fama, E., & French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3-56. https://doi.org/10.1016/0304-405X(93)90023-5

Fama, E., & French, K. (1996). Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance, 51. https://doi.org/10.1111/j.1540-6261.1996.tb05202.x

Fama, E., & French, K. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, 1-22. https://doi.org/10.1016/j.jfineco.2014.10.010

Fan, G., Zhang, R., Cao, C., Peng, L., Yeh, Y., & Hong, W. (2024). The volatility mechanism and intelligent fusion forecast of new energy stock prices. Financial Innovation, 10, 1-37. https://doi.org/10.1186/s40854-024-00621-7

Ferrero, A., Harrison, R., & Nelson, B. (2024). House Price Dynamics, Optimal LTV Limits and the Liquidity Trap. The Review of Economic Studies, 91, 940–971, https://doi.org/10.1093/restud/rdad040

Filser, L., Silva, F., & Oliveira, O. (2017). State of research and future research tendencies in lean healthcare: A bibliometric analysis. Scientometrics, 112(2), 799-816. https://doi.org/10.1007/s1119 2-017-2409-8

Findenegg, J., & Wessel, J. (2024). Pump or pedal? The impact of fuel prices on cycling in Germany. Transportation Research Part A: Policy and Practice, 186. https://doi.org/10.1016/j.tra.2024.104146

Gaio, L. E., Stefanelli, N. O., Pimenta, T., Bonacim, C. A. G., & Gatsios, R. C. (2022). The impact of the Russia-Ukraine conflict on market efficiency: Evidence for the developed stock market. Finance Research Letters. https://doi.org/10.1016/j.frl.2022.103302

Geng, Q., Hao, X., & Wang, Y. (2024). Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint. Journal of Forecasting, 43, 309-325. https://doi.org/10.1002/for.3036

Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics,113(2), 363-398. https://doi.org/10.1016/S0304-4076(02)00207-5

Hatcher, M., & Hellmann, T. (2024). Communication, networks and asset price dynamics: a survey. Journal of Economic Interaction and Coordination, 19, 1–58. https://doi.org/10.1007/s11403-023-00395-8

Haugom, E., Lyócsa, Š., & Halousková, M. (2024). The tipping point of electricity price attention: When a problem becomes a problem. Economics Letters, 235. https://doi.org/10.1016/j.econlet.2024.111547

Haukvik, N., Cheraghali, H., & Molnár, P. (2024). The role of investors’ fear in crude oil volatility forecasting. Research in International Business and Finance, 70. https://doi.org/10.1016/j.ribaf.2024.102353

Hirshleifer, D. (2002). Investor Psychology and Asset Pricing. The Journal of Finance. https://doi.org/10.1111/0022-1082.00379

Huang, T., Kumar, A., Sacchetto, S., & Vergara‐Alert, C. (2024). Stock Comovement and Financial Flexibility. Journal of Financial and Quantitative Analysis, 59, 1141-1184 https://doi.org/10.1017/S0022109022001338

Hui, C-H., Lo, C-F., & Liu, C-H. (2024). Equity Price Dynamics under Shocks: In Distress or Short Squeeze. Risks, 2(1). https://doi.org/10.3390/risks12010001

Hussain, M., Bashir, U., & Rehman, R. U. (2024). Exchange Rate and Stock Prices Volatility Connectedness and Spillover during Pandemic Induced-Crises: Evidence from BRICS Countries. Asia-Pacific Financial Markets, 31, 183–203. https://doi.org/10.1007/s10690-023-09411-0

Karpoff, J. M. (1987). The Relation Between Price Changes and Trading Volume: A Survey. The Journal of Financial and Quantitative Analysis, 22(1), 109-126. https://doi.org/10.2307/2330874

Kumar, A., & Mallick, S. (2024). Oil price dynamics in times of uncertainty: Revisiting the role of demand and supply shocks. Energy Economics, 129. https://doi.org/10.1016/j.eneco.2023.107152

Lim, K., & Brooks, R. (2011). The evolution of stock market efficiency over time: A survey of the empirical literature. Journal of Economic Surveys, 25, 69–108. https://doi.org/10.1111/j.1467-6419.2009.00611.x

Lo, A. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. J. Portf. Manage, 30, 15-29. https://ssrn.com/abstract=602222

Lo, A. (2017). Adaptive Markets: Financial Evolution at the Speed of Thought. 2. Ed. Princeton University Press.

Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1(1), 41–66. https://www.jstor.org/stable/2962126

Lyu, C., Do, H. X., Nepal, R., & Jamasb, T. (2024). Volatility spillovers and carbon price in the Nordic wholesale electricity markets. Energy Economics, 134. https://doi.org/10.1016/j.eneco.2024.107559

Maia, S., Benedicto, G., Prado, J., Robb, D., Bispo, O., & Brito, M. J., M. (2019). Mapping the literature on credit unions: Abibliometric investigation grounded in Scopus and Web of Science. Scientometrics, 120, 929-960. https://doi.org/10.1007/s11192-019-03165-1

Mandelbrot, B. B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394–419. https://www.jstor.org/stable/2351623

Massa, O. I., Karali, B., & Irwin, S. H. (2024). What do we know about the value and market impact of the US Department of Agriculture reports? Applied Economic Perspectives and Policy, 46. https://doi.org/10.1002/aepp.13409

Mohanty, S. K., & Mishra, S. (2021). Regulatory reform and market efficiency: The case of Indian agricultural commodity futures markets. Research in International Business and Finance. https://doi.org/10.1016/j.ribaf.2019.101145

Molavi, P., Tahbaz-salehi, A., & Vedolin, A. (2024). Model Complexity, Expectations, and Asset Prices. The Review of Economic Studies, 91, 2462–2507, https://doi.org/10.1093/restud/rdad073

Moraes, A. K., & Ceretta, P. S. (2023). Correlação conditional dinâmica, spillover de volatilidade e hedge para os preços do petróleo futuro e das ações das principais empresas do setor petrolífero. Estudos Econômicos, 53(2), 375-409. https://doi.org/10.1590/1980-53575325ampc

Moraes, A. K., & Ceretta, P. S. (2023). Directional volatility spillover between agricultural commodities, oil and financial indices. Organizações Rurais & Agroindustriais, 25. https://doi.org/10.48142/2520231903

Moraes, A. K., Ceretta, P. S., & Castro, L. G., Júnior. (2024). Análise Multifractal do Ibovespa: Dinâmicas de Preço, Volume Negociado e Eficiência de Mercado. Revista Evidenciação Contábil & Finanças, 12(1), 128–149. https://doi.org/10.22478/ufpb.2318-1001.2024v12n1.70209

Moraes, A. K., Ceretta, P. S., & Castro, L. G., Júnior. (2024). Explorando a assimetria na dependência entre os índices da B3: Uma análise de cópula. Revista Brasileira de Economia de Empresas, 24(1). https://doi.org/10.31501/rbee.v24i1.15137

Moraes, A. K., Furtini, A., Prado, J., Castro Junior, L., & Ceretta, P. (2024). Evolução da produção científica sobre o Mercado Eficiente: Estudo bibliométrico. Contextus – Revista Contemporânea de Economia e Gestão, 22, e92462. https://doi.org/10.19094/contextus.2024.92462

Moraes, A. K., Sobral, M., & Melo, A. (2021). An analysis of the hedge operation on hydrated ethanol in a plant in the State of Paraíba. Revista em Agronegócio e Meio Ambiente, 14, 893-906. https://doi.org/10.17765/2176-9168.2021v14n4e7850

Moraes, A. K., Sobral, M., & Melo, A. (2021). Market efficiency: application of the concept to the sucroalcooleiro sector of Paraíba. Rev. Adm. UFSM, 14, 138-161. https://doi.org/10.5902/1983465939181

Musampa, K., Eita, J. H., & Meniago, C. (2024). The Effects of Oil Price Volatility on South African Stock Market Returns. Economies, 12(1), 4. https://doi.org/10.3390/economies12010004

Narayan, P. K. (2024). Pricing behavior of clean energy stocks? Some trading implications. Energy Economics, 134. https://doi.org/10.1016/j.eneco.2024.107590

Patil, A. C., & Rastogi, S. (2019). Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature. Journal of Risk and Financial Management, 12. https://doi.org/10.3390/jrfm12020105

Peng, K., Hu, Z., & Robe, M. A. (2024). Maximum order size and market quality: Evidence from a natural experiment in commodity futures markets. The Journal of Futures Markets, 44, 803–825. https://doi.org/10.1002/fut.22494

Pinto-Ávalos, F., Bowe, M., & Hyde, S. (2024). Revisiting the pricing impact of commodity market spillovers on equity markets. Journal of Commodity Markets, 33. https://doi.org/10.1016/j.jcomm.2023.100369

Prado, J., Castro, A., Carvalho, F., Vieira, K., Machado, L., & Tonelli, D. (2016). Multivariate analysis of credit risk and bankruptcy research data: A bibliometric study involving different knowledge fields (1968–2014). Scientometrics, 106(3). https://doi.org/10.1007/s1119 2-015-1829-6

Rezitis, A. N., Andrikopoulos, P., & Daglis, T. (2024). Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes. The Journal of Futures Markets, 44. https://doi.org/10.1002/fut.22477

Robinson, Z. (2024). A macroeconomic viewpoint using a structural VAR analysis of silver price behaviour. Mineral Economics, 37, 15-23. https://doi.org/10.1007/s13563-023-00386-y

Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449-469. https://doi.org/10.1016/S0140-9883(99)00020-1

Samuelson, P. A. (1965). Proof that Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review, 6(2), 41–49.

Scheinkman, J. A., & Xiong, W. (2003). Overconfidence and Speculative Bubbles. Journal of Political Economy, 111(6). https://doi.org/10.1086/378531

Sharif, A., Aloui, C., & Yarovaya, L. (2020). Covid-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach, International Review of Financial Analysis. 70. https://doi.org/10.1016/j.irfa.2020.101496

Shiller, R. (2000). Irrational Exuberance. The American Journal of Economics and Sociology, 59(3), 537-540. https://www.jstor.org/stable/3487895

Silva, L. C. S., & Nobre, F. C. (2021). Produção científica sobre a influência dos vieses comportamentais no processo decisório: mapeamento comparativo entre Brasil, Estados Unidos da América e Europa. Revista Contribuciones a la Economía, 19(1), 53-84. https://www.eumed.net/es/revistas/contribuciones-economia/ce-enero21/processo-decisorio

Souza, R. M. F., Baia, M. W. M., Costa, I. C. M., Machado, R. S., Mendes, A. L. B., & Souto, M. V. (2017). Análise bibliométrica dos artigos científicos em finanças publicados na Revista de Administração de Empresas (RAE) da FGV/SP, no período de 2006 a 2016. Administração: Ensino e Pesquisa, 18(3), 489–517. https://doi.org/10.13058/raep.2017.v18n3.631

Takaishi, T. (2022). Time evolution of market efficiency and multifractality of the Japanese stock market. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm15010031

Thaler, R., & Sunstein, C. (2008). Nudge. Penguin Books.

Tian, Y., Wen, H., & Fu, S. (2024). Multi-step ahead prediction of carbon price movement using time-series privileged information. Expert Systems with Applications, 255. https://doi.org/10.1016/j.eswa.2024.124825

Todorov, K. (2024). When passive funds affect prices: evidence from volatility and commodity ETFs. Review of Finance, 28, 831–863, https://doi.org/10.1093/rof/rfad038

Tsaknaki, I-Y., Lillo, F., & Mazzarisi, P. (2024). Online learning of order flow and market impact with Bayesian change-point detection methods. Quantitative Finance, 25. https://doi.org/10.1080/14697688.2024.2337300

Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. Measuring Scholarly Impact, 285-320. https://doi.org/10.1007/s11192-009-0146-3

Vecco, M., Rodríguez, J. P., & Teerink, S. (2024). Climbing the ladder? The gender gap in art prices across artists’ cohorts in the Dutch art market. European Economic Review, 163. https://doi.org/10.1016/j.euroecorev.2023.104657

Vogl, M. (2023). Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framework. Chaos, Solitons and Fractal. https://doi.org/10.1016/j.chaos.2022.112884

Wahid, A., & Kowalewski, O. (2024). Monetary Policy Spillovers and Inter-Market Dynamics Perspective of Preferred Habitat Model. Economies, 12(5), 98. https://doi.org/10.3390/economies12050098

Wu, R., Hossain, M. A., & Zhang, H. (2024). Factors affecting the volatility of bitcoin prices. The Economics and Finance Letters, 11(2), 107–125. https://doi.org/10.18488/29.v11i2.3730

Yusuf, M‐B. O. Salau, T. J., & Adeiza, A. (2024). Oil and Food Price Before and During COVID-19 Pandemic in Nigeria: A Non-Linear ARDL Approach. Studia Universitatis, Vasile Goldis Arad – Economics Series, 34. https://doi.org/10.2478/sues-2024-0007

Zhu, J., Zhang, L., & Sun, X. (2024). Optimal liquidation using extended trading close for multiple trading days. Financial Innovation. https://doi.org/10.1186/s40854-024-00613-7

Published

08/27/2025

How to Cite

Moraes, A. K. de, & Castro Junior, L. G. de. (2025). Deciphering price dynamics: A bibliometric analysis of research trends in the financial market. Contextus - Revista Contemporânea De Economia E Gestão, 23, e95480. https://doi.org/10.36517/contextus.2025.95480

Issue

Section

Articles