Data mining in the context of the electronic auctions

Authors

  • Hugo Medeiros Souto Universidade Federal da Paraíba
  • Eduardo Martins de Arruda Universidade Federal da Paraíba
  • Wagner Junqueira de Araújo Universidade Federal da Paraíba

DOI:

https://doi.org/10.32810/2525-3468.ip.v4iEspecial.2019.42603.47-64

Keywords:

Data Mining, Electronic Government, Electronic trading floor, Bots, Transparent data

Abstract

The government has sought to follow developments and trends in information and communication technologies in the context of the bidding process. Thus, electronic trading is one of the products of these efforts, being characterized as a modality that presented structural solutions to reduce the excess of bureaucracy in the acquisition of common goods and services. Its implementation contributed to increase the participation of suppliers and competitiveness in the fairs, as it reduced and even eliminated, in some cases, the need for physical presence of suppliers. The modality represents today more than 94% of the tenders that took place in the country, totaling more than 84% of the amount of resources spent through tenders. Despite their benefits, failures have been identified in a number of ways, one of which is the possibility of using bots, software programmed to connect to electronic trading platforms and bidding immediately and automatically, obtaining disproportionate advantages over humans. A second product of government efforts to modernize procurement is increased transparency through the availability of open bidding and contract data, including e-bidding, as part of the Open Government and digital transformation context. The overall purpose of this study is to discuss how data analysis can be useful in preventing fraud in electronic trading processes, based on the Federal Government's open data premise. Finally, it is concluded that this study supports the importance of discussing the effects of the use of bots in electronic trading sessions and believes in the potential for greater social control by citizens through access and analysis of government openings.

Downloads

Download data is not yet available.

References

AMORIM, V. A. J. Licitações e contratos administrativos: teoria e jurisprudência. Brasília: Senado Federal, Coordenação de Edições Técnicas, 2017.

BRASIL. Lei nº 8.666, de 21 de junho de 1993. Lei de Licitações. Brasília. Disponível em: http://www.planalto.gov.br/ccivil_03/Leis/L8666compilado.htm. Acesso em: 14 jan. 2018.

BRASIL. Lei nº 10.520, de 17 de julho de 2002. Lei do Pregão. Brasília. Disponível em: http://www.planalto.gov.br/CCivil_03/leis/2002/L10520.htm. Acesso em: 14 jan. 2018.

BRASIL. Decreto nº 5.450, de 31 de maio de 2005. Regulamento do Pregão Eletrônico. Brasília. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/decreto/d5450.htm. Acesso em: 15 jan. 2018.

BRASIL. Ministério do Planejamento, Orçamento e Gestão. Secretaria de Logística e Tecnologia da Informação. Estratégia de Governança Digital da Administração Pública Federal 2016-19. Brasília: MP, 2016.

BRASIL. Ministério do Planejamento, Desenvolvimento e Gestão. Referencial de Governança e Gestão do Sistema de Serviços Gerais – SISG / Secretaria de Gestão. Brasília, 2017a.

CGU. Ministério da Transparência e Controladoria-Geral da União. 4º Plano de Ação Nacional em Governo Aberto. Brasília, 2018. Disponível em: http://governoaberto.cgu.gov.br/no-brasil/planos-de-acao-1/copy_of_3o-plano-de-acao-brasileiro/4o-plano-de-acao-nacional_portugues.pdf. Acesso em: 3 dez. 2018.

DE CASTRO, L.N.; FERRARI, D.G. Introdução a Mineração de Dados. São Paulo: Saraiva. Edição do Kindle, 2017.

DONG, F.; SHATZ, S. M.; XU, H. Combating Online In-Auction Fraud: Clues, Techniques and Challenges. Computer Science Review, v. 3, n. 4, p. 245-258. University of Illinois at Chicago, Chicago, U.S. National Science Foundation. 2009.

EDELSTEIN, Herbert A. Introduction to Data Mining and Knowledge Discovery. 3. ed. Potomac: Two Crows Corporation, 1999.

HAN, Jiawei; KAMBER, Micheline; PEI, Jian. Data Mining: Concepts and Techniques. 3. ed. Waltham: Elsevier, 2012.

HAND, David; MANNILA, Heikki; SMYTH, Padhraic. Principles of Data Mining. Cambridge, The MIT Press, 2001.

JUSTEN FILHO, M. Comentários à lei de licitações e contratos administrativos / Marçal Justen Filho. 15. ed. São Paulo: Dialética, 2012.

LIN, Tsau Young. Mathematical Foundation of Association Rules – Mining Associations by Solving Integral Linear Inequalities. In: LIN, Tsau Young et al. (ed.). Foundations of Data Mining and Knowledge Discovery. Berlim: Springer, 2005. (Studies in Computational Intelligence, v. 6).

MELLO, C. A. B. Curso de direito administrativo. 32. ed. São Paulo: Malheiros, 2015.

MONAHAN, D. Bot Defense: Insights Into Basic And Advanced Techniques For Thwarting Automated Threats. Enterprise Management Associates. 2016. Disponível em: https://www.enterprisemanagement.com/research/asset.php/3317/Bot-Defense:-Insights-Into-Basic-and-Advanced-Techniques-for-Thwarting-Automated--Threats. Acesso em: 4 nov. 2018.

OCDE. OECD Digital Government Toolkit: 12 principles. 2018. Disponível em: http://www.oecd.org/governance/digital-government/toolkit/12principles/. Acesso em: 25 nov. 2018.

OCDE. The E-government Imperative. Paris: OCDE, 2003.

OPEN KNOWLEDGE INTERNACIONAL. What is Open?, Disponível em: https://okfn.org/about/. Aceso em: 29 mar. 2019.

PAINEL DE COMPRAS. Ministério do Planejamento, Orçamento e Gestão. Painel de Compras do Governo Federal. Disponível em:
https://paineldecompras.planejamento.gov.br Acesso em: 14 jan. 2018.

PAINEL DE COMPRAS. Ministério do Planejamento, Orçamento e Gestão. Painel de Compras do Governo Federal. Versão 1.4. 2018. Disponível em: http://paineldecompras.planejamento.gov.br. Acesso em: 26 nov. 2018.

Published

2019-11-02

How to Cite

SOUTO, Hugo Medeiros; MARTINS DE ARRUDA, Eduardo; ARAÚJO, Wagner Junqueira de. Data mining in the context of the electronic auctions. Informação em Pauta, [S. l.], v. 4, n. especial, p. 47–64, 2019. DOI: 10.32810/2525-3468.ip.v4iEspecial.2019.42603.47-64. Disponível em: http://periodicos.ufc.br/informacaoempauta/article/view/42603. Acesso em: 24 nov. 2024.