Formação do biofilme em ferida cutânea e seu comportamento diante das intervenções: revisão integrativa

Autores

DOI:

https://doi.org/10.15253/2175-6783.20222378112

Palavras-chave:

Biofilmes; Ferimentos e Lesões; Enfermagem; Estomaterapia.

Resumo

Objetivo: identificar na literatura a formação do biofilme e o seu comportamento diante das intervenções em feridas cutâneas. Métodos: revisão integrativa, realizada nas bases de dados Cumulative Index to Nursing and Allied Health Literature, Literatura Latino-Americana e do Caribe em Ciências da Saúde, EMBASE, Scopus, The Cochrane Library Collaboration, MEDLINE/PubMed e Science Direct, sem delimitação temporal. Foram selecionados 19 estudos. Avaliação das informações ocorreu de forma descritiva, confrontando com os achados pertinentes. Resultados: os estudos da amostra foram publicados no idioma inglês e contemplaram três tipos de pesquisa de biofilme: dois clínicos, seis in vitro e 11 in vivo (animal). Incluíram-se três temas: criação de modelo biofilme (n=4), avaliação do biofilme (n=3), comportamento do biofilme diante de intervenções para o seu manejo (n=12). Conclusão: efeitos prejudiciais do biofilme na cicatrização de feridas foram confirmados. Diversas intervenções foram capazes de reduzir e eliminar o biofilme nos modelos in vitro e in vivo. Contribuições para a prática: constatou-se que avaliação clínica da lesão não permite identificar o biofilme, inclusive quando presente encontra-se abaixo da superfície da lesão. Este achado suscita reflexão por parte dos enfermeiros a respeito das intervenções adotadas para a remoção do biofilme.

Referências

Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017;25(5):744-57. doi: https://dx.doi.org/10.1111/wrr.12590

Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, et al. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience. 2021;24(5):102443. doi: https://dx.doi.org/10.1016/j.isci.2021.102443

Percival SL, Mayer D, Malone M, Swanson T, Gibson D, Schultz G. Surfactants and their role in wound cleansing and biofilm management. J Wound Care. 2017;26(11):680-90. doi: https://dx.doi.org/10.12968/jowc.2017.26.11.680

Trøstrup H, Laulund ASB, Moser C. Insights on host-pathogen interactions in biofilm-infected wounds reveal possibility for new treatment strategies. Antibióticos. 2020;9(7):396. doi: https://doi.org/10.3390/antibiotics9070396

Mori Y, Nakagami G, Kitamura A, Minematsu T, Kinoshita M, Suga H, et al. Effectiveness of biofilm-based wound care system on wound healing in chronic wounds. Wound Repair Regen. 2019;27(5):540-7. doi: https://doi.org/10.1111/wrr.12738

Stoffel JJ, Riedi PLK, Romdhane BH. A multimodel regime for evaluating effectiveness of antimicrobial wound care products in microbial biofilms. Wound Repair Regen. 2020;28(4):438-47. doi: https://doi.org/10.1111/wrr.12806

Mendes KDS, Silveira RCCP, Galvão CM. Use of the bibliographic reference manager in the selection of primary studies in integrative reviews. Texto Contexto Enferm. 2019;28:e20170204. doi: https://doi.org/10.1590/1980-265X-TCE-2017-020

Souza PBM, Ramos MS, Pontes FAR, Silva SSC. Coparenting: a study of systematic literature review. Estilos Clin. 2016;21(3):700-20. doi: http://dx.doi.org/10.11606/issn.1981-1624.v21i3p700-720

Neta ISS, Medeiros MS, Gonçalves MJF. Vigilância da saúde orientada às condições de vida da população: uma revisão integrativa da literatura. Saúde Debate. 2018;42(116):307-17. doi: https://doi.org/10.1590/0103-1104201811625

Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, James G. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen. 2011;19(5):532-41. doi: https://dx.doi.org/10.1111/j.1524-475X.2011.00720.x

Guedes GMM, Santos-Filho ASP, Regis WFM, Ocadaque CJ, Amando BR, Sidrim JJC, et al. Ex situ model of biofilm-associated wounds: providing a host-like environment for the study of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. J Appl Microbiol. 2021;131(3):1487-97. doi: http://dx.doi.org/10.1111/jam.15026

Pirlar RF, Emaneini M, Beigverdi R, Banar M, van Leeuwen WB, Jabalameli F. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. PLoS One. 2020;15(6):e0235093. doi: https://dx.doi.org/10.1371/journal.pone.0235093

Kwiecińska-Piróg J, Skowron K, Śniegowska A, Przekwas J, Balcerek M, Załuski D, et al. The impact of ethanol extract of propolis on biofilm forming by Proteus Mirabilis strains isolated from chronic wounds infections. Nat Prod Res. 2019;33(22):3293-97. doi: http://dx.doi.org/10.1080/14786419.2018.1470513

Tahir S, Malone M, Hu H, Deva A, Vickery K. The effect of negative pressure wound therapy with and without instillation on mature biofilms in vitro. Materials (Basel). 2018;11(5):811. doi: http://dx.doi.org/10.3390/ma11050811

Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Biointerfaces Colloids Surf B. 2018;163:192-200. doi: https://dx.doi.org/10.1016/j.colsurfb.2017.12.035

Ngo QD, Vickery K, Deva AK. The effect of topical negative pressure on wound biofilms using an in vitro wound model. Wound Repair Regen. 2012;20(1):83-90. doi: https://dx.doi.org/10.1111/j.1524-475X.2011.00747.x

Kim JH, Ruegger PR, Lebig EG, VanSchalkwyk S, Jeske DR, Hsiao A, et al. High levels of oxidative stress create a microenvironment that significantly decreases the diversity of the microbiota in diabetic chronic wounds and promotes biofilm formation. Front Cell Infect Microbiol. 2020;10:259. doi: http://dx.doi.org/10.3389/fcimb.2020.00259

Davis SC, Li J, Gil J, Head C, Valdes J, Glinos GD, et al. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Wound Repair Regen. 2019;27(4):360-65. doi: https://dx.doi.org/10.1111/wrr.12718

Brandenburg KS, Weaver AJ Jr, Qian L, You T, Chen P, Karna SLR, et al. Development of Pseudomonas Aeruginosa biofilms in partial-thickness burn wounds using a Sprague-Dawley rat model. J Burn Care Res. 2019;40(1):44-57. doi: http://dx.doi.org/10.1093/jbcr/iry043

Hasan N, Cao J, Lee J, Naeem M, Hlaing SP, Kim J, et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater Sci Eng C Mater Biol Appl. 2019;103:109741. doi: https://doi.org/10.1016/j.msec.2019.109741

Guoqi W, Zhirui L, Song W, Tongtong L, Lihai Z, Licheng Z, et al. Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model. Antonie Van Leeuwenhoek. 2018;111(9):1557-70. doi: https://dx.doi.org/10.1007/s10482-018-1045-5

Karna SL, D’Arpa P, Chen T, Qian LW, Fourcaudot AB, Yamane K, et al. RNA-seq transcriptomic responses of full-thickness dermal excision wounds to Pseudomonas aeruginosa acute and biofilm infection. PLoS One. 2016;11(10):e0165312. doi: http://dx.doi.org/10.1371/journal.pone.0165312

Brandenburg KS, Calderon DF, Kierski PR, Brown AL, Shah NM, Abbott NL, et al. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings. Wound Repair Regen. 2015;23(6):842-54. doi: http://dx.doi.org/10.1111/wrr.12365

Seth AK, Zhong A, Nguyen KT, Hong SJ, Leung KP, Galiano RD, et al. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model. Wound Repair Regen. 2014;22(6):712-9. doi: https://dx.doi.org/10.1111/wrr.12232

Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen. 2011;19(3):400-10. doi: https://dx.doi.org/10.1111/j.1524-475X.2011.00690.x

Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 2010;18(5):467-77. doi: https://dx.doi.org/10.1111/j.1524-475X.2010.00608.x

Kim PJ, Attinger CE, Constantine T, Crist BD, Fausto E, Hirche CR, et al. Negative pressure wound therapy with instillation: International consensus guidelines update. Int Wound J. 2020;17(1):174-86. doi: http://dx.doi.org/10.1111/iwj.13254

Suleman L, Purcell L, Thomas H, Westgate S. Use of internally validated in vitro biofilm models to assess antibiofilm performance of silver-containing gelling fibre dressings. J Wound Care. 2020;29(3):154-61. doi: https://dx.doi.org/10.12968/jowc.2020.29.3.154

Publicado

2022-04-13

Como Citar

Borges, E. L., Spira, J. A. O., Amorim, G. L., & Coelho, A. C. S. M. (2022). Formação do biofilme em ferida cutânea e seu comportamento diante das intervenções: revisão integrativa . Rev Rene, 23, e78112. https://doi.org/10.15253/2175-6783.20222378112

Edição

Seção

Artigos de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)