Physiological characteristics in seeds of the common bean under multicollinearity and conditions of salinity
Palabras clave:
Phaseolus vulgaris, Salt stress, Canonical variableResumen
The objective of this work was evaluate multicollinearity effect and discard the variables which are based on multicollinearity reduction in diversity analysis of common bean genotypes, related to seeds physiological quality, in different salinity levels in germination substrate. The common bean seed germination test for six cultivars and seven landrace genotypes was performed in paper rolls (germitest), imbibed in NaCl solutions on the osmotic potentials of 0.0; -0.3 and -0.6 MPa, maintained in germinated Mangelsdorff type at temperature of 25 °C, on constant light. The experimental design was completely randomized in factorial arrangement 13 x 3 (genotype x osmotic potential), with four replications with 25 seeds, totaling 100 seeds per treatment. The carried out evaluations were: weight of a thousand seeds, germination mean time, primary root protrusion in five and nine days after seeding, normal seedling percentage, hypocotyl and primary root length and dry matter from aerial part and roots. The multicollinearity diagnosis was carried out on the phenotypic correlation matrix and the characteristic discard was preceded through the canonical variable technique. To evaluate the multicollinearity effect, the Tocher cluster method was used before and after the variables discard. The proposed discard methodology of variables is efficient on the multicollinearity reduction and the number of discarded physiological quality descriptors is higher on the potentials of -0.3 and -0.6 MPa, under salt stress conditions, need to be discarded three characteristics and in the absence of stress only two discarded, to became a weak condition of multicollinearity to follow with the cluster analysis. The common bean genotypes clusters are different on the severe and weak multicollinearity only under salt stress condition.